
Measuring the Evolution of the Internet
in the Age of Giants

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften
der RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Master of Science

Jan Rüth

aus Hagen, Deutschland

Berichter:

Prof. Dr.-Ing. Klaus Wehrle
Prof. Bruce MacDowell Maggs, Ph.D.

Tag der mündlichen Prüfung: 14. 08. 2020





Abstract

The Internet has evolved into an essential cornerstone of modern life. At its core,
it is seemingly still powered by protocols developed in the late 1980s. Since then,
the Internet has experienced a colossal visible evolution, e.g., from delivering small
text files over dynamic websites to highly interactive and bulky content that defines
whole economic sectors. Notwithstanding, it is hard to believe that this change
demanded no technological evolution, and in fact, research and industry have worked
on many mechanisms and improvements to the core protocols. Today, we see Internet
giants such as Google, Facebook, or Akamai controlling clients, servers, and networks
driving these changes. Still, research has shown that these innovations often remain
hard to deploy in practice as the Internet has condensed to supporting only a small
set of protocols and parts of their features today.
In this dissertation, we design novel Internet measurement methodologies to gain
an understanding of how the Internet has evolved from textbook knowledge, how it
deviates from standardized practices, and how these discovered discrepancies affect
Internet operation. To this end, we recognize the critical role of Internet giants and
specifically investigate their impact on core Internet technologies.
From the bottom up, we start on the transport layer. Our analysis of TCP’s
initial congestion window shows that the Internet slowly converges towards recently
standardized values. In contrast, Internet giants work outside these recommendations,
and we find them configuring values that are several times larger. Moreover, we
inspect the birth, deployment, and performance of QUIC, TCP’s successor, finding
that Internet giants have outdistanced the general Internet such that their market
dominance challenges practical network operation. The silver lining is that Internet
giants push their ideas towards standardization to be picked up at large. Nevertheless,
auditing their use of congestion control shows that it is a core-differentiating property
that crucially affects the bandwidth-sharing properties of today’s Internet.
We utilize Internet control plane backscatter from our measurements to quantify
the obsoletion in the Internet’s core restricting its evolution. Apart from finding
decade-long deprecated behavior, we uncover pathological cases of routing loops.
Thus, we look up the stack and investigate how content owners utilize Meta-CDNs for
traffic steering to innovate and liberate themselves from practice-dictating Internet
giants. Our analyses show only a niche use of this technology, but it has the potential
to affect CDN and ISP operation when applied at a massive scale.
Lastly, we explore the use of application layer innovations in large parts of the
Web. JavaScript ubiquitously powers the interactive Web, and Internet giants push
WebAssembly as its much more efficient successor. However, we discover that it is
almost exclusively abused for browser-based cryptocurrency mining. Drilling down
on this business, we expose that current blocking techniques are insufficient, leading
us to design a novel method to estimate the generated revenues.
In summary, our contributions demonstrate that Internet giants coin practical
Internet evolution today. While they are keen to standardize their innovations, their
configurations are often a well-kept secret. Their market dominance challenges the
innovation of others, but even they are not immune to an abuse of their technology.



Kurzfassung

Das Internet hat sich zu einem elementaren Eckpfeiler des modernen Lebens entwi-
ckelt. Den Lehrbüchern nach basiert es aber immer noch auf Protokollen aus den 80er
Jahren. Von außen betrachtet hat das Internet sich jedoch enorm verändert: Von der
Auslieferung kleiner Textdateien über dynamische Webseiten bis hin zu hochgradig
interaktiven Inhalten auf denen ganze Wirtschaftszweige aufbauen. Natürlich war
dieser Wandel nicht ohne neue Mechanismen und Weiterentwicklungen aus Wissen-
schaft und Industrie möglich. Diese werden heute maßgeblich von Internet-Giganten
wie Google, Facebook oder Akamai, die Clients, Server und Netzwerke kontrollieren,
vorangetrieben. Die Forschung hat aber gezeigt, dass es diese Innovationen oft nicht
bis ins Internet schaffen, da nur eine kleine Anzahl von Protokollen und Teile deren
Funktionalität in Wirklichkeit unterstützt werden.
In dieser Dissertation entwerfen wir neue Internet-Messmethoden, um zu verste-
hen, wie sich das Internet vom seinem Lehrbuchverhalten entfernt hat, wie es von
standardisierten Praktiken abweicht und wie die aufgedeckten Diskrepanzen den Inter-
netbetrieb beeinflussen. Dabei erkennen wir die kritische Rolle der Internet-Giganten
und untersuchen gezielt deren Einfluss auf Kern-Internet Technologien.
Ausgehend von der Transportschicht betrachten wir zunächst TCPs initiales Stau-
kontrollfenster. Wir zeigen, dass sich das Internet langsam in Richtung aktueller
standardisierter Werte bewegt. Im Gegensatz dazu nutzen Internet-Giganten um
ein vielfaches höhere Werte, als von der Standardisierung empfohlen. Außerdem
untersuchen wir die Verbreitung von QUIC, TCPs Nachfolger, und vermessen dessen
Leistung. Internet-Giganten haben den Rest des Internets abgehängt und wälzen
durch ihre Marktmacht den Netzwerkbetrieb um. Jedoch treiben sie ihre Ideen zur
Standardisierung und stellen sie der Allgemeinheit zur Verfügung. Bei genauer Über-
prüfung ihrer Staukontrolle zeigt sich indes, dass die Kombination aus Algorithmus
und Parameterisierung die Effizienz und Fairness des Internets maßgeblich steuert.
Mithilfe von Reaktionen der Internet-Kontrollebene auf unsere Messungen quantifi-
zieren wir zentrale Innovationshemmnisse. Abgesehen von jahrzehntelang veraltetem
Verhalten, decken wir pathologische Fälle von Routing-Schleifen auf. Meta-CDNs
umschiffen diese Hemmnisse über höhere Schichten. Unsere Analysen zeigen, dass
ihre Verkehrssteuerung es Inhaltsbesitzern erlaubt Vorgaben von Internet-Giganten
zu umgehen. Momentan fristen Meta-CDNs aber nur ein Nischendasein, hätten aber,
bei großflächigem Einsatz, das Potenzial CDNs und ISPs merklich zu beeinflussen.
Schlussendlich untersuchen wir die Nutzung von Anwendungsschicht-Innovationen im
Web. Dort ist JavaScript der Motor der Interaktivität, den Internet-Giganten durch
das viel effizientere WebAssembly beerben wollen. Unsere Analysen zeigen aber, dass
WebAssembly fast ausschließlich für die Generierung von Kryptogeld missbraucht
wird. Wir brechen diese Praktik auf und stellen fest, dass aktuelle Sperrmechanismen
nicht greifen, weswegen wir eine neue Methode zur Umsatzschätzung entwickeln.
In Summe zeigt unsere Forschung, dass Internet-Giganten die praktische Entwicklung
des heutigen Internets prägen. Obwohl sie ihre Innovationen standardisieren, sind
ihre Konfigurationen oft ein gut gehütetes Geheimnis. Ihre Marktbeherrschung stellt
andere vor Probleme, aber auch ihre Technologien können missbraucht werden.



Acknowledgments

First and foremost, I want to express my gratitude towards Klaus, thank you for
giving me a second home at COMSYS and allowing me to pursue my own research
interests that eventually resulted in this book. Thank you for your advice and
support over all these years. I also want to thank Bruce, not only for agreeing to
serve as my secondary opponent but also for the numerous discussions at conferences
and for just being the nicest person ever.

Further, I want to thank Ismet who supervised my Bachelor’s thesis and inspired me
to work as a student helper at COMSYS. Also, thank you, Hanno, for supervising
my Master’s thesis and subsequently encouraging me to pursue a Ph.D. Thank you
for guiding and helping me at the beginning. Similarly, thank you, Florian, the
discussions and your inspiration as my first office mate really helped me to get started
and see problems from another angle. Without a doubt I am most grateful to Oliver;
thank you for igniting my interest in Internet measurements, your advice, help and
criticism, the numerous evenings before paper deadlines, and your guidance.

During my time at COMSYS, I had the pleasure of collaborating with many bright
students which helped me to shape my work. Thank you, Christian, for your initial
work on TCP, thank you, Pascal, for scaling it out, thank you, Ike, for pushing
congestion control. I want to especially thank Konrad, thank you for your help with
the Meta-CDNs, and browser-mining. You’ve really impressed me in your Master’s
thesis, especially with your dedication and efforts around the QUIC user studies.

I also want to thank all the awesome people at COMSYS. I want to specifically thank
Hanno, Henrik, Torsten, Martin Serror, Helge, and Mike for being more than just
colleagues. Thank you for all the heated discussions, papers, proofreading, conference
trips, Kleinwalsertal excursions, and all the other non-work related activities. Thank
you, Martin Henze for all your advice and discussions around browser-mining. Thank
you, Constantin, for your relentless efforts in your Master’s thesis and for being an
awesome office mate. Thank you, Petra, Ulrike, Claudia, Kai, Dirk, and Rainer for
keeping an eye out on the chair’s work-life balance. Specifically, thank you Dirk for
showing me how teaching is done, and thank you, Rainer, for showing me how a
server room works and for keeping up with my endless scanning endeavors. To all
the others that I did not mention above: thank you for making COMSYS a great
place.

Last, but not least I want to thank my family and friends for their continuous support,
love, and friendship. Thank you for shaping and accompanying me over the years.
Above all, thank you, Lisa, for putting up with me, your distractions, understanding,
patience, as well as the balance that you provide.





Declaration of Authorship

Parts of this thesis are based on the following peer-reviewed papers that have
already been published. All my collaborators are among my co-authors. A detailed
attribution of contributions can be found on the next pages.

List of Publications

[RBH17] Jan Rüth, Christian Bormann, and Oliver Hohlfeld. Large-Scale Scan-
ning of TCP’s Initial Window. In Proceedings of the Internet Mea-
surement Conference (IMC ’17), pages 304–310. ACM, 2017. doi:
10.1145/3131365.3131370.

[RPD+18] Jan Rüth, Ingmar Poese, Christoph Dietzel, and Oliver Hohlfeld. A
First Look at QUIC in the Wild. In Proceedings of the Conference on
Passive and Active Measurement (PAM ’18), pages 255–268. Springer,
Cham, 2018. doi: 10.1007/978-3-319-76481-8_19.

[HRW+18] Oliver Hohlfeld, Jan Rüth, Konrad Wolsing, and Torsten Zimmermann.
Characterizing a Meta-CDN. In Proceedings of the Conference on
Passive and Active Measurement (PAM ’18), pages 114–128. Springer,
Cham, 2018. doi: 10.1007/978-3-319-76481-8_9.

[RH18] Jan Rüth and Oliver Hohlfeld. Demystifying TCP Initial Window
Configurations of Content Distribution Networks. In Proceedings of
the IFIP Network Traffic Measurement and Analysis Conference (TMA
’18), pages 1–8. IEEE, 2018. doi: 10.23919/TMA.2018.8506549.

[RZW+18] Jan Rüth, Torsten Zimmermann, Konrad Wolsing, and Oliver Hohlfeld.
Digging into Browser-based Crypto Mining. In Proceedings of the
Internet Measurement Conference (IMC ’18), pages 70–76. ACM, 2018.
doi: 10.1145/3278532.3278539.

[RKH19a] Jan Rüth, Ike Kunze, and Oliver Hohlfeld. TCP’s Initial Window –
Deployment in the Wild and its Impact on Performance. Transactions
on Network and Service Management (TNSM June ’19), 16(2):389–402,
IEEE, June 2019. doi: 10.1109/TNSM.2019.2896335.

https://doi.org/10.1145/3131365.3131370
https://doi.org/10.1007/978-3-319-76481-8_19
https://doi.org/10.1007/978-3-319-76481-8_9
https://doi.org/10.23919/TMA.2018.8506549
https://doi.org/10.1145/3278532.3278539
https://doi.org/10.1109/TNSM.2019.2896335


[RZH19] Jan Rüth, Torsten Zimmermann, and Oliver Hohlfeld. Hidden Treasures
— Recycling Large-Scale Internet Measurements to Study the Internet’s
Control Plane. In Proceedings of the Conference on Passive and Active
Measurement (PAM ’19), pages 51–67. Springer, Cham, 2019. doi:
10.1007/978-3-030-15986-3_4.

[RKH19b] Jan Rüth, Ike Kunze, and Oliver Hohlfeld. An Empirical View on
Content Provider Fairness. In Proceedings of the IFIP Network Traffic
Measurement and Analysis Conference (TMA ’19), pages 1–8. IEEE,
2019. doi: 10.23919/TMA.2019.8784684.

[WRW+19] Konrad Wolsing, Jan Rüth, Klaus Wehrle, and Oliver Hohlfeld. A
Performance Perspective on Web Optimized Protocol Stacks: TCP+
TLS+HTTP/2 vs. QUIC. In Proceedings of the Applied Networking
Research Workshop (ANRW ’19), pages 1–7. ACM, 2019. doi: 10.114
5/3340301.3341123.

[RWW+19] Jan Rüth, Konrad Wolsing, Klaus Wehrle, and Oliver Hohlfeld. Per-
ceiving QUIC: Do Users Notice or Even Care? In Proceedings of the
International Conference on emerging Networking EXperiments and
Technologies (CoNEXT ’19), pages 1–7. ACM, 2019. doi: 10.1145/33
59989.3365416.

A Note on Previously Published and Joint Work

Parts of this dissertation are based on collaborations with students as well as with
other researchers. The resulting publications form the scientific foundation of this
thesis and were created with the support of the respective co-authors. We now
attribute the different chapters and sections of this dissertation to the respective
publications and authors. If not noted explicitly otherwise, the author of this
dissertation was responsible for the initial concepts, methodologies, solutions, the
implementations and evaluations, as well as the final publication.

• Christian Bormann laid the foundation for Section 3.1 in his Master the-
sis [Bor15]. The author of this dissertation designed the initial congestion
window (IW) methodology, and Mr. Bormann implemented the first version.
For the later publication [RBH17] a heavily reworked version of the implemen-
tation by this dissertation’s author with help from Pascal Hein was used. The
author of this dissertation performed the measurements, and he performed the
analysis in collaboration with Oliver Hohlfeld. For Section 3.1.4, the author of
this dissertation reimplemented the methodology to allow analyzing content
delivery networks (CDNs) and together with Mr. Hohlfeld, analyzed the data
and published the results in [RH18]. The dissertation’s author performed the
evaluation, and Alexander Löbel later validated it (through an independent
implementation and evaluation) in his Bachelor’s thesis [Löb18]. Ike Kunze
implemented the author’s design during his Master’s thesis [Kun18], which is
the basis for the performance perspective of IWs starting in Section 3.1.7.2.

https://doi.org/10.1007/978-3-030-15986-3_4
https://doi.org/10.23919/TMA.2019.8784684
https://doi.org/10.1145/3340301.3341123
https://doi.org/10.1145/3340301.3341123
https://doi.org/10.1145/3359989.3365416
https://doi.org/10.1145/3359989.3365416


Mr. Kunze, as well as Mr. Hohlfeld, helped in publishing parts of the results
in [RKH19a].

• Our study on evolvable transports in Section 3.2 was designed and implemented
by the dissertation author and analyzed with the help of Oliver Hohlfeld and
appeared in parts [RPD+18]. Christoph Dietzel provided the Internet exchange
point (IXP) data and helped in analyzing it. Similarly, Ingmar Poese provided
the Internet service provider (ISP) data and its meta-information and also
helped in analyzing the data. Konrad Wolsing helped in implementing and
maintaining a framework used in the tool to capture QUIC connection parame-
ters. Further, the foundation to Section 3.2.6 was laid in the Master’s thesis by
Konrad Wolsing [Wol19]. The technical evaluation appeared in [WRW+19] for
which Mr. Wolsing performed all evaluations, the ideas and the methodologies
were brought in by this dissertation’s author. Further, the two user studies
appeared in [RWW+19], also here, the studies themselves were supervised by
Mr. Wolsing. He also contributed significantly to the design of the studies
themselves.

• Section 3.3 on content provider (CP) fairness bases on the Master’s thesis of
Ike Kunze [Kun18] and parts of it appeared in [RKH19b]. This dissertation’s
author designed the methodology, and Mr. Kunze subsequently implemented
and initially analyzed the data. Additionally, the author performed the later
analysis in collaboration with Mr. Kunze and Mr. Hohlfeld that also appeared
in [RKH19b] .

• Section 4.1 bases on the publication in [RZH19], it sources from measurements
that are done in the context of Chapter 3 as well as of [ZRW+17, ZWH+18].
The software to process the data was designed and written by the author of
this dissertation, Torsten Zimmermann helped in analyzing part of the data,
especially the part about source quench (SQ) messages. Mr. Zimmermann, as
well as Mr. Hohlfeld, aided in general discussions.

• Section 4.2 is the joint work of the author of this dissertation, Mr. Zimmermann,
and Mr. Hohlfeld. Specifically, the parts relying on Ripe Atlas probes and the
Cedexis Radar platform were the primary responsibility of Mr. Zimmermann.
The author of this dissertation analyzed the Cedexis eco-system and developed
the required tools and methods. Mr. Wolsing implemented the Raspberry PI-
based measurement platform. Mr. Hohlfeld helped in discussing and integrating
the findings into the context. The results of this section appeared in the joint
publication in [HRW+18].

• Chapter 5 is based on the publication in [RZW+18]. This dissertation’s author
developed the methodology to find Wasm, and Mr. Wolsing implemented the
initial prototype. The implementation finally used was done by the author of
this dissertation. The methodology to associate blocks to a mining pool has
its roots in private discussions with Martin Henze, who was not an author on
the publication, and was subsequently developed from this idea by the author
of this dissertation. Martin Coughlan from Symantec performed the actual



classification of websites to categories using Symantec’s proprietary RuleSpace
engine. Mr. Zimmermann and Mr. Hohlfeld helped in analyzing domain lists
using the NoCoin filter list.



Contents

1 Introduction 1

1.1 Research Questions and Challenges . . . . . . . . . . . . . . . . . . . 5

1.2 Contributions and Outline of the Dissertation . . . . . . . . . . . . . 6

2 Background 9

2.1 Internet Architecture and the Rise of Internet Giants . . . . . . . . . 9

2.1.1 The Domain Name System . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Content Delivery Networks . . . . . . . . . . . . . . . . . . . . 14

2.2 Internet Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Measurement Ethics . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Internet Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 The Transmission Control Protocol . . . . . . . . . . . . . . . 20

2.3.2 QUIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2.1 Version Negotiation and Connection Establishment . 28

2.3.2.2 Challenges for QUIC . . . . . . . . . . . . . . . . . . 30

2.3.3 Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.3.1 Reno . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.3.2 CUBIC . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.3.3 BBR . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.3.4 Burstiness and Pacing . . . . . . . . . . . . . . . . . 37

2.3.3.5 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.4 Router Queues . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.4.1 Buffer Sizing . . . . . . . . . . . . . . . . . . . . . . 40

2.3.4.2 Active Queue Management . . . . . . . . . . . . . . 42



3 Deployable Transport Optimizations 47

3.1 Small Change, Big Effect – TCP’s Initial Congestion Window . . . . 51

3.1.1 TCP’s Initial Congestion Window . . . . . . . . . . . . . . . . 53

3.1.1.1 Testbed Study: Impact of IW Size on Internet Per-
formance . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . 55

3.1.2 Measuring IWs . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.3 Measuring IW Configurations in the Wild . . . . . . . . . . . 57

3.1.3.1 HTTP-based IW Inference . . . . . . . . . . . . . . . 57

3.1.3.2 TLS-based IW Inference . . . . . . . . . . . . . . . . 58

3.1.3.3 Results: IW Distributions in IPv4 . . . . . . . . . . 60

3.1.3.4 Overall IW Distribution . . . . . . . . . . . . . . . . 61

3.1.3.5 IW Defined by Byte Limit . . . . . . . . . . . . . . . 64

3.1.3.6 IW Distribution by Network & Service . . . . . . . . 64

3.1.3.7 Measuring CDN IWs . . . . . . . . . . . . . . . . . . 66

3.1.4 Campus Network Perspective on CDN IWs . . . . . . . . . . . 68

3.1.4.1 IW Sizes . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.1.4.2 Are IWs Content-Dependent? . . . . . . . . . . . . . 70

3.1.5 Worldwide Perspective on CDN IWs . . . . . . . . . . . . . . 71

3.1.6 Burstiness of the CDN IWs . . . . . . . . . . . . . . . . . . . 74

3.1.7 IW Performance when Competing for Traffic . . . . . . . . . . 77

3.1.7.1 Testbed and Parameterization . . . . . . . . . . . . . 78

3.1.7.2 Increasing CUBIC IWs and Applying Pacing . . . . 79

3.1.7.3 Pacing Aggressiveness in Slow Start . . . . . . . . . 81

3.1.7.4 Increased IWs with BBR Congestion Control . . . . 82

3.1.8 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . 83

3.2 Deploying a New Internet Transport – QUIC . . . . . . . . . . . . . . 85

3.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2.2 Measurement Overview . . . . . . . . . . . . . . . . . . . . . . 89

3.2.3 An Introduction to gQUIC’s Handshake . . . . . . . . . . . . 89

3.2.4 Availability: QUIC Server Infrastructure . . . . . . . . . . . . 90



3.2.4.1 gQUIC Census in October 2017 . . . . . . . . . . . . 91

3.2.4.2 Evolution of Google QUIC (gQUIC) in 2018 and 2019 95

3.2.4.3 The Rise of iQUIC . . . . . . . . . . . . . . . . . . . 100

3.2.5 Usage: QUIC Traffic Share . . . . . . . . . . . . . . . . . . . . 102

3.2.5.1 QUIC Census 2017 . . . . . . . . . . . . . . . . . . . 102

3.2.5.2 Beyond the Census:
Traffic Shares in Access Networks . . . . . . . . . . . 106

3.2.6 The Performance of gQUIC Against an Optimized TCP+TLS+
HTTP/2 Web Stack . . . . . . . . . . . . . . . . . . . . . . . 111

3.2.6.1 Web Performance Metrics . . . . . . . . . . . . . . . 112

3.2.6.2 Repeatable Protocol Performance Evaluations . . . . 112

3.2.6.3 QUIC vs. TCP:
According to Web Performance Metrics . . . . . . . . 115

3.2.6.4 QUIC vs. TCP: According to User Perception . . . . 120

3.2.7 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . 127

3.3 Fairness in an Anarchic System – Congestion Control . . . . . . . . . 130

3.3.1 Background and Related Work . . . . . . . . . . . . . . . . . 131

3.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.3.2.1 Home User (Residential Access) Scenarios . . . . . . 132

3.3.2.2 Testbed Setup . . . . . . . . . . . . . . . . . . . . . 133

3.3.2.3 Parameter Space . . . . . . . . . . . . . . . . . . . . 135

3.3.2.4 Fairness Metric . . . . . . . . . . . . . . . . . . . . . 136

3.3.2.5 Testbed Validation . . . . . . . . . . . . . . . . . . . 136

3.3.3 Congestion Control in the Wild . . . . . . . . . . . . . . . . . 137

3.3.3.1 Lab Traffic vs. Content Provider Traffic . . . . . . . 138

3.3.3.2 Content Provider vs. Content Provider . . . . . . . . 141

3.3.3.3 Can CoDel Improve Fairness? . . . . . . . . . . . . . 143

3.3.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . 144

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



4 Evolution in the Internet’s Core 149

4.1 Listening into the Void – Studying Internet Core Evolution . . . . . . 151

4.1.1 Scan Infrastructure & Dataset . . . . . . . . . . . . . . . . . . 152

4.1.2 Study of ICMP Responses . . . . . . . . . . . . . . . . . . . . 153

4.1.2.1 Responses to Individual Measurements . . . . . . . . 155

4.1.2.2 ICMP Echos . . . . . . . . . . . . . . . . . . . . . . 156

4.1.2.3 Source Quench . . . . . . . . . . . . . . . . . . . . . 157

4.1.2.4 Redirect . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.1.2.5 Unreachable Hosts . . . . . . . . . . . . . . . . . . . 158

4.1.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . 161

4.1.3 Routing Loops . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.1.3.1 Methodology: Detecting Loops . . . . . . . . . . . . 162

4.1.3.2 Routing Loops in the Wild . . . . . . . . . . . . . . 162

4.1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

4.1.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . 164

4.2 Individualism in the Age of Giants – Indirection through Meta-CDNs 166

4.2.1 Background and Related Work . . . . . . . . . . . . . . . . . 167

4.2.2 Characterizing a Meta-CDN . . . . . . . . . . . . . . . . . . . 168

4.2.2.1 Operation Principles . . . . . . . . . . . . . . . . . . 169

4.2.2.2 Customers . . . . . . . . . . . . . . . . . . . . . . . . 171

4.2.3 A Global View on Cedexis . . . . . . . . . . . . . . . . . . . . 174

4.2.3.1 Infrastructure . . . . . . . . . . . . . . . . . . . . . . 174

4.2.3.2 How Customers utilize Cedexis . . . . . . . . . . . . 177

4.2.3.3 Latency Perspective . . . . . . . . . . . . . . . . . . 179

4.2.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . 180

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5 Abusing Innovation on the Application Layer 183

5.1 Browser-based Cryptocurrency Mining . . . . . . . . . . . . . . . . . 185

5.1.1 Excursus: Browser-based Mining 101 . . . . . . . . . . . . . . 186

5.1.2 Prevalence of Browser Mining . . . . . . . . . . . . . . . . . . 188

5.1.2.1 NoCoin List . . . . . . . . . . . . . . . . . . . . . . . 188



5.1.2.2 Chrome . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.1.3 The Coinhive Service . . . . . . . . . . . . . . . . . . . . . . . 192

5.1.4 Short Link Forwarding Service . . . . . . . . . . . . . . . . . . 192

5.1.5 Estimating the Network Size . . . . . . . . . . . . . . . . . . . 195

5.1.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.1.7 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . 199

5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6 Conclusion 201

6.1 Contributions and Findings . . . . . . . . . . . . . . . . . . . . . . . 202

6.1.1 What Is the Impact of Internet Giants on Internet Transport
Evolution? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.1.2 How Do Content Owners Flexibilize in Light of Internet Giants
and Network Ossification? . . . . . . . . . . . . . . . . . . . . 204

6.1.3 How Are ApplicationLayer OptimizationsThatArePushed
Forward by Internet Giants Used at Large? . . . . . . . . . . . 206

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

6.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Abbreviations and Acronyms 211

Bibliography 213





1
Introduction

The Internet is undoubtedly one of the most extensive and complex collaborations of
systems that humankind ever built. Today, it has become a ubiquitous part of the
everyday life that likely goes far beyond what the inventor’s of early packet switching,
as its foundation, had in mind. In this regard, an old Massachusetts Institute of
Technology (MIT) computer handbook [Sta82] notes about the Advanced Research
Projects Agency Network (ARPANET) (the early predecessor of the Internet),

“Sending electronic mail over the ARPAnet [sic] for commercial profit or
political purposes is both antisocial and illegal.”

— Christopher C. Stacy [Sta82]

In light of today’s use of the Internet, such a statement seems ridiculous. Nonetheless,
the ARPANET was a research network to explore the foundation of packet switching
and networking. Only with its evolution to what we consider the Internet today,
building on top of a universal addressing and a highly interconnected network of
individual networks, the social and commercial interest of the individual participants
grew (when realizing what possibilities it offered). These interests, of course, also
resulted in a technological evolution of the Internet. To this end, Leonard Kleinrock,
who is often credited as one of the Internet’s pioneering inventors, wrote,

“In less than a year [after its first use on the ARPANET] email accounted
for the majority of the network traffic.”

— Leonard Kleinrock [Kle10]

Thus, already the early Internet showed that the availability of new technology
drastically changes the way networks were used and utilized. Kleinrock further argues
that network measurements, which he was responsible for, were a core principle in
the ARPANET to understand what they created, how people used it, and whether



2 1. Introduction

or not it was functioning as predicted or if models needed adaption. Still, these
measurements were challenging, due to the high degree of cooperation that was
required between the individual parties, and were eventually discontinued.

“In July 1975 responsibility for the ARPANET was given to DCA [Defense
Communication Agency]. This terminated the systematic measurement,
modeling, and stress testing that the UCLA [University of California]
NMC [Network Measurement Center] had performed for almost six years,
and was never again restored for the Internet.”

— Leonard Kleinrock [Kle10]

Given the relatively small number of participating networks back then, such a
systematic and comprehensive analysis of the Internet today, with its over 91 000
allocated autonomous systems (ASes) [Mai19], seems impossible just by the sheer
numbers.

Internet Giants Transform the Internet

However, not all networks are equally important for the Internet as a whole, and
recently, we have observed a flattening of the Internet’s three-tiered architecture driven
by large content providers (CPs) and Internet exchange points (IXPs) [GAL+08].
Today, end-users use the Internet and especially Web content with increasing access
speeds [Aka16]. To this end, it was shown [EGR+11, TGD+18], similar to Kleinrock’s
initial observations about how technology drives networks, that today, videos are
causing a substantial fraction of Internet traffic. These increasing demands to the
network have led to a logical centralization of the content-serving Internet where
a few big players serve the majority of the content [LIM+10, CSA+18]. These big
players range from content delivery networks (CDNs), like Akamai or Cloudflare,
over service providers, like Google or Facebook, to CPs themselves, like Netflix or
Amazon. Today, they heavily peer across all network tiers, thus disrupting the
traditional hierarchy of networks, and thereby, they practically reduce the number
of involved networks between them and their customers (eyeballs). This reduced
reliance on other networks helps in increasing the quality of the data delivery and
in reducing transit costs but becomes only feasible once the overall traffic volume
exceeds a certain level. Furthermore, many of these players are also heavily involved
in not only serving the content but also in displaying them to the users. To this
end, Google with its Chrome browser dominates browser market shares [Moz18] but
also other companies such as Microsoft, Mozilla or Apple are heavily involved and
shape terms and conditions how users perceive content. In summary, this reliance
empowers all these Internet giants, and content owners are increasingly dependent on
them, i.e., since they require the Internet giants’ services (and are unable to realize
them themselves), they also have to increasingly live at the giants’ mercy and must
adhere to their practices and pricing.

Still, these Internet giants enliven and challenge Internet evolution beyond a structural
and economic level. Given their involvement in many parts of today’s communications,
they are in a pursuit for performance driven by increased revenues in response to



3

increased user satisfaction. At the Web Conference 2006, Marissa Mayer of Google
reported that they lose 20% first-page searches when the search page needs twice
as long to appear to a user [Lin06]. Amazon conducted similar experiments [Lin06].
They were able to show that sales dropped by 1% for an additional 100ms page delay.
Although the inverse, i.e., a 100ms speedup will increase sales by 1%, is obviously not
necessarily true, these numbers are often cited to justify the development of enhanced
Internet protocols. To this end, we have witnessed the emergence of many new
mechanisms, extensions, and protocols on the network, transport, and application
layer that supposedly increase the performance. Still, it is largely unknown who
actually uses these features and if they are practically beneficial, whether Internet
giants themselves are applying them and if their use differs from what was actually
specified. These questions become especially interesting since it is known that
evolving the Internet is practically extremely challenging [Han06].

Internet Evolution is Practically Challenging

Enhancing existing protocols or devising new mechanisms is often not too challenging
on a conceptual level. However, deploying these changes at large has become a
significant hurdle. Back from the early days of the Internet, Kleinrock reports,

“[...] after a short grace period of a few months, no network was allowed
to participate in the Internet if it did not comply with IPv4.”

— Leonard Kleinrock [Kle10]

Today, the successor to the Internet Protocol Version 4 (IPv4), the Internet Protocol
Version 6 (IPv6) whose Request for Comments (RFC) goes back to 1998 [RFC2460], is
still in rollout, while deployment is on the rise [KGP+09, DLH+12, CAZ+14], it is still
not ubiquitously supported 22 years later. These studies have a direct consequence
for Internet content owners: if they wish to be reachable by the majority of Internet
users, they need to acquire increasingly costly IPv4 addresses. Nevertheless, these
deployment challenges have two roots. On the one hand, changes that require to
update every connected system are impractical given the sheer number of connected
devices. On the other hand, it turned out that even small changes that actually
do not require cooperation are often impossible because implementors have ossified
around the initial design [Han06] and made assumptions that the RFCs never stated.

These ossification challenges are especially apparent when looking at the network
and transport layer. For example, it took over a decade [MAF05, TKB+15] to be
sure that adding explicit congestion notification (ECN) to the Transmission Control
Protocol (TCP) and the Internet Protocol (IP) would not harm connectivity. ECN
allows routers to mark packets when they are congested rather than dropping the
packet, which in turn allows TCP to reduce its rate without actually experiencing
loss. One of the major concerns was that ECN uses two, previously unused, bits
in the TCP header, which the RFCs initially reserved for precisely such extensions.
Notwithstanding, given that this space was unused for decades, implementors assumed
that the values of these bits must be zero and would drop the packet otherwise.



4 1. Introduction

Thus, while using ECN gave clear performance advantages, it came with the risk of
no connectivity at all, which did not help in promoting the feature.

These deployment challenges are not restricted to TCP’s core header specifications.
TCP even has a special option mechanism designed to extend it further. One of the
most prominent examples is the story of Multipath TCP. Multipath TCP uses TCP’s
option mechanism to extend TCP to transport data over multiple paths through the
Internet. Raiciu et al. [RPB+12] report on the issues and workarounds that they had
to come up with to create a deployable Multipath TCP in the presence of an ossified
Internet. They describe various kinds of middleboxes that break the Internet’s end-
to-end principle, such as firewalls, network address translations (NATs), or proxies,
that demand extreme care when designing extensions such that connectivity never
breaks. While they succeeded in building a deployable Multipath TCP, middleboxes
still hinder its practical use, and thus, Multipath TCP must often fall back to regular
TCP.

Takeaway. The Internet giants’ pursuit for performance and the difficulty to practi-
cally evolve core Internet technologies seem to be two mutually exclusive observations.
Thus, we posit that, even though a comprehensive analysis of all participating systems
in the Internet (as initially performed by Kleinrock) is impossible today, a focus on
these Internet giants may allow a specialized but still globally applicable view on
Internet evolution. Thereby enabling resuming to study how the Internet is used,
whether it functions as assumed or if the current understanding in research and
standardization needs updating.

How Do Internet Giants Affect Internet Evolution?

In this dissertation, we draft behind Kleinrock’s vision of practically understanding
how the Internet evolves and if the evolved features can keep their promises with
the help of network measurements. The Internet is an anarchic system without
controlling entities that permit or forbid particular practices. Only standards govern
the Internet operation; they, however, typically describe only a minimum for safe
interoperability but leave room at the other end. By investigating how Internet
reality diverges from standardization and textbook knowledge, we aim to update the
understanding of Internet operation. This reality-check informs standardization on
questions such as, whether standards are used in the way they were intended or if
they need updating or whether Internet reality affects the operation of new standards.
It further updates the understanding in research, e.g., fueling the development of new
protocols by clearly painting practical challenges and realities that must be taken
into consideration. Notwithstanding, we further hope to provide a lasting impact on
education; teaching how the Internet operates from a purely academic point of view
neglects the reality that will be faced post-education.

To provide this perspective on Internet evolution, we recognize the importance
and power of Internet giants that aim to improve the Web and we design and
perform Internet measurements to shine a light on their practices and the associated
repercussions when accelerating the Web through transport layer optimizations.
We further use Internet control plane feedback provided by these transport layer



1.1. Research Questions and Challenges 5

measurements to analyze how initial assumptions baked into network protocols
that have been reverted or that are now considered deprecated still prevail in the
Internet. While our findings show a large portion of outdated systems, we continue
to analyze how individuals can regain control of content routing in light of powerful
Internet giants and an ossified Internet. Finally, we investigate how application layer
optimizations that have been pushed by these Internet giants are (ab)used in the
Internet and again emphasize Kleinrock’s observation how technology still transforms
the usage of networks today. Admittedly, designing Internet measurements to capture
Internet evolution is challenging.

1.1 Research Questions and Challenges

To grasp an understanding of how the Internet has evolved, we introduce novel
Internet measurement methodologies that are aligned to answer the following research
questions.

• What is the impact of Internet giants on Internet transport evolu-
tion?
With this question, we investigate how Internet giants evolve subject to the
ossification on the transport layer. In this regard, we analyze how performance
optimizations are applied in the Internet at large and by Internet giants in
detail. How these optimizations relate to RFC-recommended practices as well
as analyze the repercussions that may come with them. We further design
methodologies that enable to investigate the birth of a new Internet transport
and how Internet giants deploy it and thereby transform the Internet landscape
at large. Our findings further motivated to investigate how the different
performance optimizations practically affect the distributed resource sharing
in the Internet.
We thus paint a holistic picture of the current state of the Internet transport
and thereby show its evolution.

• How do content owners flexibilize in light of Internet giants and
network ossification?
With this question, we shift the focus towards Internet players that are impacted
by Internet giants and the non-existing evolution of the Internet core itself.
To answer this question, we first take a look at how the network itself has
ossified. We find that the public Internet is highly ossified, which renders
network approaches infeasible for content owners that do not operate their
own network. Thus, we look up the stack where evolution is still possible and
practically analyze how content owners circumvent limitations put in place by
Internet giants to allows them to flexibilize in light of giants and ossification.



6 1. Introduction

• How are application layer optimizations that are pushed forward by
Internet giants used at large?
This final question further broadens the scope by investigating how people use
the technology that Internet giants primarily developed and pushed towards
Internet standards. Specifically, we look at how application layer technology
that evolved rapidly over the past decades is now (ab)used in the Internet at
large.
By tackling this question, we provide a contrasting view to our earlier investi-
gations.

We answer these questions by designing novel measurement methodologies that
allow us to investigate the Internet at large and in detail. However, answering these
questions involves tackling several challenges that we highlight in the respective
chapters. We continue with an outline of the contributions of this dissertation.

1.2 Contributions and Outline of the Dissertation

We start our journey in discovering the evolution of the Internet from a historical
viewpoint on the transport layer. Chapter 3 investigates how Internet giants strive
for performance in an ossified protocol stack. Specifically, we first look at TCP,
the de-facto transport since the 1980s and look at how TCP’s initial congestion
window (IW), as an end-host only parameter enabling tweaking the performance
regardless of protocol ossification, has evolved. To do so, we develop measurement
methodologies that enable us to investigate the IW distribution in all of IPv4’s address
space. We put a particular emphasis on how Internet giants use this parameter
in speeding up the Web and find out that they operate way outside of current
RFC-recommended practices. The chapter continues and looks at the current state-
of-the-art in deployable transport protocols, namely QUIC. We were able to design
measurements that monitor the birth and deployment of this new protocol. Further,
we conduct human-centered evaluations of its performance and find that its superior
performance is often not recognized by users. Still, our measurements highlight
how Internet giants transform the Internet and that their market power is able
to overwhelm operators. Motivated by our finding that congestion control (CC)
often dominates protocol performance during our investigations of IW and QUIC
performance, we close this chapter by looking at how Internet giants utilize CC.
Our measurements show that Internet resources are not shared equally, especially
the high traffic volumes of some Internet giants use CCs that dominate traditional
defaults leading to highly asymmetric resource allocations.

Given the dominance of Internet giants today, Chapter 4 looks at how individuals
can regain control of how they want to utilize the Internet infrastructure. To
do so, we first investigate the state of the Internet’s core in terms of deprecation
and ossification around outdated standards and false assumptions. We develop a
measurement methodology that sources from data that is created as a by-product from
the measurements in Chapter 3 and shows that directly influencing the Internet’s



1.2. Contributions and Outline of the Dissertation 7

core seems impossible given the large number of outdated systems. Given our
observations, we turn our view up the stack where evolution has always been possible
and investigate how Meta-CDNs utilize the Domain Name System (DNS) to perform
policy-based rerouting of traffic between Internet giants. To this end, we dissect one
of the most massive Meta-CDN deployments by Cedexis and investigate who uses it,
for what purpose and whether or not it offers performance benefits for their users.

Finally, Chapter 5 completes our view on Internet evolution by inspecting how people
use advancements on the application layer in the Web. However, we now focus on
technology that has been designed by Internet giants not to work around Internet
core limitations but to speed up the application layer itself. We will however not
focus on how the Internet giants themselves use their innovations but rather how
the rest of the Internet utilizes them. In this regards, we focus on WebAssembly
(Wasm) as the new efficient alternative to JavaScript that ubiquitously powers the
interactive Web. Driven by media reports on browser-based cryptomining, we find
that cryptominers often utilize Wasm due to its high efficiency. We thus design a
measurement methodology to specifically investigate the use of Wasm on large parts
of the Web. Our measurements show that people use Wasm already today. However,
we were able to attribute over 96% of all Wasm code to miners by developing a novel
fingerprinting methodology that outperforms current blacklist approaches. Given
that people currently abuse Wasm for mining the Monero currency, we set out to
dissect the largest browser-based cryptomining provider Coinhive. To this end, we
develop a novel methodology that enables us to associate blocks in Monero’s privacy-
preserving blockchain to a mining pool and specifically Coinhive. This methodology
enables us to statistically investigate Coinhive’s user base as well as the revenue
generated through browser-based cryptomining.

Before we dive into this journey, Chapter 2 provides the necessary technical back-
ground knowledge to understand the design decisions that we took in our Internet
measurements. First, we highlight how the Internet’s architecture and specifically
how Internet giants have changed it over the past decades. In that regard, we inves-
tigate DNS as a core technology used by CDNs for content routing. Furthermore,
we highlight how the protocol stack has ossified around a small number of protocols
and false assumptions about them. We continue by showing the general approach to
Internet measurements as the foundation for our investigations. Subsequently, we
highlight several core technologies investigated in this thesis, i.e., TCP’s CC with
its fairness properties and active queue management (AQM) as a solution to many
of TCP’s problems, as well as QUIC as the foundation of the Hypertext Transfer
Protocol (HTTP)/3 and TCP’s likely successor for the Web.



8 1. Introduction



2
Background

This chapter provides the necessary background information on Internet technology
and wraps up crucial keystones in its evolution that help us in understanding why
we focus on particular technologies, make design choices, and come to conclusions.
It is not meant to replace any lecture on data communications even though, in parts,
we will reiterate on some core concepts.

2.1 Internet Architecture and
the Rise of Internet Giants

We first dive into the structure of the Internet as a foundation for nearly all our
later analyses that regard network ownership or routing. After this brief structural
introduction, we shift the focus to the Internet protocol stack and its historical
ossification to understand why Internet giants pursue the technological shifts we
analyze in Chapter 3.

Internet Architecture

The Internet is a network of individual networks, the autonomous systems (ASes);
in May 2019, there were roughly 91 000 allocated ASes [Mai19]. Each AS is uniquely
identified using an AS number (ASN). These numbers and also Internet Protocol (IP)
addresses are assigned to the ASes through the Internet Corporation for Assigned
Names and Numbers (ICANN) via regional Internet registries (RIRs).

According to [RFC4271] an AS is a collection of several routers under a single technical
administration that uses an Interior Gateway Protocol (IGP) to route packets within
the collection of routers according to a set of metrics. For interconnect, the different



10 2. Background

ASes use the Boarder Gateway Protocol (BGP) [RFC4271]. In essence, if two ASes
decide to peer, i.e., connect each other, or one buys transit, i.e., network access,
from the other, they utilize BGP to exchange reachability information in the form
of prefixes, i.e., IP address ranges, and AS-paths to reach these prefixes. When an
AS decides to transport data for another AS through its own network (transit) to
reach an IP address, it will forward its learned prefix/AS-path pairs to the other AS
adding itself to the front of the AS-path. This transitive exchange of information
eventually forms the basis for routing decisions in the Internet.

Each AS uses this information to calculate the “best” next-hop router that should
forward a packet. It is important to note that “best” does not always mean optimal
in terms of performance. BGP allows defining several metrics that can be used by the
network administrator to prefer one route over another (e.g., there can be multiple
peers that enable reaching the same destination). Typically, when two networks peer,
they enter a business contract that explicitly defines service level agreements (SLAs)
that govern what kind of traffic both parties may exchange. In that regard, BGP
is merely a framework that enables to reflect these contracts on a technical level.
Thus, given multiple peers to reach a destination, a network administrator can utilize
BGP to perform traffic engineering (TE) to (cost) efficiently route outgoing traffic or
influence routing decisions of its peers, e.g., given specific expected traffic volumes.
This TE also implies that a packet does not always follow the AS-path seen at the
source as all intermediate ASes perform individual routing decisions. Furthermore,
it also means that an answer to a packet does not necessarily follow the same route
back to the original sender, which is generally known as Internet path asymmetry.

Autonomous System Peering Structure

In the early Advanced Research Projects Agency Network (ARPANET), universities
and some military corporations were interconnected [Kle10] logically to experiment
with packet switching. We emphasize logically since, of course, these different
institutions were spread over the North American continent, and a physical connection
was only possible with the help of large telecommunication providers that operated
the telephone network. Thus, physical telephone lines were rented to interconnect
the institutions.

This physical reliance on large telecommunication providers has also led to the
traditional tiered structure of the Internet found in every textbook which we depict
in Figure 2.1a. They provided the backbone to which several regional providers
connect, in turn offering connectivity to Internet service providers (ISPs) which offer
access to regular customers/users.

Recently, Gill et al. [GAL+08] found that this hierarchy started to flatten. They
found that the emergence of content delivery networks (CDNs) and other large
content providers (CPs), as well as the proliferation of Internet exchange points
(IXPs), disrupted this architecture [LIM+10] in favor of what we depict in Figure 2.1b.
As these CPs had to rely on the large Tier-1 providers to disseminate their content
to the users, they also required to buy transit, which, given their significant amount
of outgoing traffic, was a costly matter, even though transit prices have been falling



2.1. Internet Architecture and the Rise of Internet Giants 11

Level3, Deutsche 
Telekom, BT, etc.. 

NAP NAP

ISP1 ISP2 ISP3

National 
Backbone 
Operators

Regional 
Access 

Providers

Local
Access 

Providers

Customer 
IP 

Networks

(a) The traditional, textbook, Internet
architecture.

Global Transit 
/ National 
Backbones

Global 
Internet 
Core

Regional / 
Tier 2 

Providers

Customer 
IP 

Networks

“Hyper Giants“
Large Content, 

Consumer, Hosting CDN

IXP IXP IXP

ISP1 ISP2

(b) The recent Internet Architecture that is
impacted by highly connected Internet
Giants and IXPs.

Figure 2.1 The traditional and more recent Internet architecture. Adapted from [LIM+10].

since the end of the last century (by about 30% each year [Nor14]). Still, prices are
known to be a matter of negotiation, commitment, and many other factors which
makes planning difficult [VLF+11]. IXPs, to this end, usually offer transparent
pricing where one buys a link with a specific capacity and then the IXP enables
one to reach all other networks that also are peering at the IXP. While large Tier-1
networks still operate the global backbone, the Internet giants flatten the traditional
hierarchy by heavily peering across all tiers often with the help of IXPs. Thus, many
Internet giants do not critically rely on other networks to reach their customers,
putting them into the position to rapidly evolve.

Internet Protocol Stack

Nevertheless, also Internet giants are bound to the technological structures that
the pioneering inventors of packet switching set in place in the early 1980s. Still,
from the early beginnings, they designed the Internet for evolution. To enable this
evolution, IP, or more specifically back then IP Version 4 (IPv4), was mandated as a
common routing and addressing scheme. Depicted in Figure 2.2a, this ubiquitous
availability forms the “narrow waist” of the Internet that enables evolution below
and above the IP layer. Indeed, this reliance on IP enabled a plethora of access
technologies below, as well as, many transport and application layer protocols above.

However practically, especially above IP, development and deployment of new proto-
cols did not go hand in hand. This struggle had several reasons. Two of them being;
first, protocols were often developed in academic content, and commercial Interest
was limited, which rendered it difficult to get others to deploy the protocols. Second,
the Internet had started to ossify around a couple, heavily used protocols, especially
on the transport layer. For example, since the Internet could not sustain the growth,
and it was apparent that Internet addresses were a scarce resource in IPv4, network
address translation (NAT) was deployed to fight address exhaustion. Aggravatingly,
these middleboxes started to alter IP and transport header information to fulfill their
task, thereby violating the end-to-end principle. While middleboxes are debatable,
their use is often necessary for network operation. However, they critically challenge



12 2. Background

email WWW phone ...

SMTP HTTP RTP...

TCP UDP ...

IP

ethernet PPP ...

CSMA async sonet ...

copper fiber radio ...

Layer 7

Layer 4

Layer 3

Layer 2

Layer 1

(a) The Internet protocol hourglass. Adapted
from [Dee98].

IP

HTTP
TLS

TCP

Applications

Link

v6v4

(b) The dual-twisted or two-stemmed
ossified Internet “martini glass”. Adapted
from [TH14].

Figure 2.2 The traditional and new (ossified) Internet protocol stack.

the deployability of new Internet protocols. To continue the NAT example, NATs
typically only implement address translation for the Transmission Control Protocol
(TCP) and the User Datagram Protocol (UDP), the two most common transport
protocols, and drop every other transport. This constraint critically hinders the
deployment of new protocols, yet it further turned out that many boxes make addi-
tional assumptions on the Internet protocols. It was shown (e.g., [RPB+12]) that
standard-compliant extensions to TCP or IP are not deployable due to these boxes.

Today, the Internet protocol stack is thus widely regarded as depicted in Figure 2.2b.
IP is still the common substrate; however today, IPv4 co-exists with IP Version 6
(IPv6) that is still in rollout. Above IP, most applications make use of TCP and
often Transport Layer Security (TLS) for security, and due to its simplicity and
success in the Web, use some version of the Hypertext Transfer Protocol (HTTP).
Even applications that could use a better architecture, e.g., building on UDP, still
utilize this architecture such as Youtube for video delivery. This success has also
lead academia and industry to focus on HTTP and TLS for innovation, however,
as we will see in the later chapters, TCP poses insurmountable hurdles which are
currently pushed by Internet giants.

We continue by looking at the Domain Name System as it is the foundation for
human-rememberable addressing and is also heavily utilized by many large CPs for
routing users to close-by content.

2.1.1 The Domain Name System

Early on in the ARPANET, it became evident that remembering numerical ad-
dresses is a challenging task for humans. To this end, already in 1973, it was
suggested [RFC606] to have a central repository containing an authoritative file



2.1. Internet Architecture and the Rise of Internet Giants 13

zone
zone

ccTLD newgTLDgTLD

“Root“

denet com org edu netflixnl nrw ...

google

mail

googlemail

l
maps drive

rwth-aachen

comsys

drudge laboratory

www
...

www

Figure 2.3 Logical DNS tree structure. Leaves denote hosts whose full DNS name is the
concatenation of labels from the root to the leaf. Different portions of the tree are managed by
different name servers in several zones.

mapping addresses to human-readable hostnames. In the 1980s, a single person was
responsible for this file [RFC882]. Thus, holidays, as well as the required update
frequency due to the Internet’s growth, made it hard to manage.
These and other problems gave birth to the Domain Name System (DNS), a hierarchi-
cal tree-like logical segmentation of the domain name space that allows distributing
the management to many authoritative name servers. However, DNS is more than
a logical concept. It is also a protocol that defines how resolvers can retrieve and
lookup information in this highly distributed database.
Figure 2.3 shows a small, incomplete portion of the DNS tree. All top-level domains
(TLDs) are reachable via the root zone; among others, there are generic TLDs,
country-code TLDs, and more recently new generic TLDs, all are managed by
ICANN. One or more name servers (NSes) under a single administrative domain
manage each zone and are in turn referenced in their hierarchically preceding zone. A
DNS hostname is the concatenation of each label from the leaf to the root separated
by a period, where the root zone’s label is empty.
The root zone itself is made up of 13 logical root servers that are managed by 12
independent organizations, labeled a, b, c, ..., to m. Each server is however replicated
for fault tolerance; to this end, root servers make heavy use of anycast routing.
To enable users to resolve a hostname, e.g., to an IP address, a resolver is required.
It is the resolver’s task to iteratively query the DNS tree until it has reached a
leaf. This resolution involves a series of message exchanges, at first, when starting
from scratch, the resolver will contact one of the root servers (operating systems
typically provide a hints file containing some root server addresses). The resolver
will then request resolution, e.g., for an A-record (an IPv4 address), of a hostname.
Since it is outside of the root server’s jurisdiction, it will try to point to a name
server (using an NS-record) that has more information. Taking the example of
www.laboratory.comsys.rwth-aachen.de, it will point to the name server of .de,
one of them is named a.nic.de. Since we require an IP address, a subsequent
resolution of this record is required. For reasons of efficiency, a server typically



14 2. Background

$ dig @134.130.4.9 +norecurse www.laboratory.comsys.rwth-aachen.de

;; ANSWER SECTION:
www.laboratory.comsys.rwth-aachen.de. 172800 IN CNAME laboratory.

comsys.rwth-aachen.de.
laboratory.comsys.rwth-aachen.de. 172800 IN A 137.226.59.41

Figure 2.4 Output of the dig command line tool (reduced to the essential part) for the final
DNS resolution step of the example. Each answer contains the requested name, a TTL, a class,
the record type and the answer.

provides this record directly together with the NS-record in an additional section
of the DNS answer. Now, the resolver can contact the authoritative DNS server
for the .de zone, and it can again ask for the A-record of the hostname that we
want to resolve. However, the server again redirects us to rwth-aachen’s name
server with the same mechanism as before. Finally, when contacting this server, it is
able to answer the query as it is the authoritative name server for this zone. Even
though there are additional subdomain parts in the hostname, it is not clear before
resolving how zones are divided. In case of our original query for an A-record for
www.laboratory.comsys.rwth-aachen.de, the server will answer with two records
as shown in Figure 2.4.

The first record contains a canonical name (CNAME)-record, i.e., a record that maps
one name to another. Usually, one would resolve this record similarly to every other
record. In this case, rwth-aachen’s zone is also responsible for the redirect’s target.
Its DNS server directly provided the A-record as well.

To speed up this tedious resolution process, DNS resolvers can cache records according
to each record’s time to live (TTL). In our example, both records have a lifetime of
172 800 s, thus, are allowed to be cached and do not need to be resolved again for 48 h.
To draft behind this feature, DNS has the concept of a recursive resolver. Instead
of having every single user perform the aforementioned iterative queries, a central
resolver, e.g., operated by the user’s ISP performs the iterative queries. To this end,
each user forwards her query to the central resolver asking for recursive resolution.
After the resolver got the final answer, it will forward it to the original requester.
Thus, several requests from different users can effectively utilize the caching that
resulted from a single user’s resolution.

While DNS offers many other concepts, for this dissertation, we will mostly make
use of CNAME and A-records. Notwithstanding, CDNs heavily use both concepts
as we will see in the following.

2.1.2 Content Delivery Networks

In the early 2000s, operating websites became increasingly complex as the user
base became more and more international, the complexity of operating a Web



2.1. Internet Architecture and the Rise of Internet Giants 15

server and optimizing the website itself was steadily rising, and most importantly
it became increasingly complex to scale to the vast number of users. At the same
time, companies found that unresponsive and long-loading websites harmed users’
consume-behavior. To this end, CDNs came to the market to solve the problems
mentioned above. In essence, one can regard CDNs as a globally distributed website
cache. By replicating website content around the world, users can be directed to
nearby content caches to be served quicker and more efficiently as CDNs massively
optimize websites as well as their delivery. Nevertheless, not all content is cacheable,
e.g., when a user logs in to a password protected part of a website or if a website
shows user-specific content. To this end, as well as when content is cacheable but
not in the cache, the CDN’s server then forwards these requests to the origin server,
i.e., the original Web server, to be answered and relays the answer as if it produced
it itself.

To serve users from a nearby cache, a CDN thus needs to direct users to such a cache.
Two common ways are using anycast or DNS. When using anycast, CDNs try to
optimize the routing to be able to direct users to a close-by cache. We will focus on
DNS in the following as it is still vital also for anycast-based CDNs.

DNS for User to Content Routing

As the DNS is responsible for resolving names to IP addresses (see Section 2.1.1),
a CDN must decide on a target server that should serve the content during the
DNS resolution. To this end, the resolver must contact the CDN’s NS. However,
the CDN’s NS is typically not the authoritative NS of a domain and is thus not
contacted during the DNS resolution.

Let us take the example of www.tagesschau.de, the news website of the German
public-service television which is hosted with the help of the Akamai CDN (one of
the largest CDN operators). When we follow the DNS tree for www.tagesschau.de,
the .de name server redirects us to ns1.dunkel.de which in fact is one of the
authoritative name servers. However, instead of providing us with an A-record,
it uses a CNAME-record to effectively redirect us to a different domain name, in
this example, san.tagesschau.de.edgekey.net. As we can see, this hostname is
very different in that it is not only hosted in a different TLD but also does not
share the same domain. Thus, effectively, the CNAME-record was used to change
the authoritative NS. In this case, Akamai operates edgekey.net, and this way,
www.tagesschau.de delegates control to Akamai. As our DNS resolver will now
continue to resolve the CNAME, Akamai is now contacted and thus enabled to
resolve to a server of Akamai’s choice. While this example was taken from Akamai,
it is typical for a DNS-based CDN. Two key observations can be made; first, typically
control is handed over to the CDN via a CNAME-record. Second, the CNAME record
effectively encodes the original request such that the CDN knows which content a
user is asking for. This information is then used to select a suitable content serving
server.

Typically, a CDN optimizes this choice with regard to latency, available bandwidth,
server load, availability of caches, and operational costs. While the exact mapping



16 2. Background

$ dig @8.8.8.8 www.tagesschau.de

;; ANSWER SECTION:
www.tagesschau.de. 173 IN CNAME san.tagesschau.de.edgekey.net.
san.tagesschau.de.edgekey.net. 16555 IN CNAME e8178.e6.akamaiedge.net.
e8178.e6.akamaiedge.net. 19 IN A 184.31.89.157

Figure 2.5 Output of the dig command line tool (reduced to the essential part) when requesting
recursive resolution at 8.8.8.8 (Google’s public DNS server) for www.tagesschau.de.

function is a business secret, CDNs today usually try to minimize latency towards
their customers for increased interactivity and faster delivery. Latency in the Internet
mostly depends on two factors. First, the physical length of the medium (e.g., cables
or wireless links) between CDN and user, and second, the queuing delay within each
router on the path. Achieving low latency is challenging as the CDN is unaware of
the user’s address as a recursive DNS resolver usually performs the DNS resolution
on behalf of the user. CDNs nevertheless assume that users are in close proximity
to the recursive DNS resolver, a reasonable assumption, as ISPs and other DNS
operators in turn also try to minimize the latency between users and DNS servers for
increased DNS responsiveness. Thus, CDNs periodically determine the round-trip
time (RTT) between their servers and the DNS resolvers, e.g., using network pings,
building a latency matrix. With the help of this matrix, as well as the other metrics,
a CDN’s DNS server can now perform an informed decision to which content serving
server it best redirects a user.

In Akamai’s case, this decision step happens twice, which we depict in Figure 2.5
using dig’s output. The first line of the answer section shows the CNAME-redirect
that we discussed earlier, the DNS server demands a similar redirect in the subsequent
line. In fact, Akamai operates global DNS instances which redirect us to a local DNS
instance that has more precise knowledge (redirected to in the second answer line).
One critical observation that one can make is that the TTLs are vastly different
between the different records (173 s, 16 555 s, and just 19 s). Since a DNS recursor
will cache the records, it will answer subsequent requests to the same hostname from
its cache. Thus setting large values reduces the DNS-load on the CDN’s DNS servers
and users profit from the caching itself, but on the other hand, the CDN’s DNS
server is unable to redirect users somewhere else during the record’s lifetime. It is
just a tradeoff that CDNs have to perform between being able to quickly steer users,
making use of caching, and managing their servers’ load.

Today, CDNs have become an integral part of the Internet. Their services go far
beyond simple caching; they are used to protect websites against attacks, they
optimize a website structurally and, as we will see in Chapter 3, they profoundly
optimize their transport protocols. However, there are also more advanced concepts
that we investigate in Chapter 4 and that are currently challenging CDN operation
and their profits. Additional information regarding CDN operation and their design
space beyond what we presented here can be found in [DMP+02]. We continue with
a general discussion of Internet measurements before looking at transport protocols.



2.2. Internet Measurements 17

2.2 Internet Measurements

Internet measurements are the foundation on which this dissertation builds its
methodologies. Generally, one distinguishes between active and passive measurements,
which we employ both. Each approach has advantages and disadvantages, and it
significantly depends on the measurement goal which of both is more suitable.

Active Measurements

In active measurements, as the name suggests, one actively participates in the
communication. This partaking can range from setting up connections to injecting
some other kind of probe traffic to stimulate a specific response that one can then
observe. This full control over the measurement is one of the advantages of active
measurements. To this end, the operator can study specific system or network
properties in situations that would otherwise rarely or never occur, e.g., to perform
penetration testing or discover worst-case performance. However, on the downside,
active measurements interact with live systems, thus also affecting their operation
and potentially the measurement itself. Furthermore, active measurements typically
do not allow to gather insights about usage patterns, e.g., actively measuring the
RTT to every Web server in the Internet may yield interesting insights, however, it
does not easily give insights into which latency website users actually experience
when visiting the respective Web servers. Active measurements are, to this end, also
vantage point, i.e., measurement location, specific and it is typically hard to gather
representative vantage points as we will also see later in Chapter 3 and Chapter 4.

Passive Measurements

Passive measurements, on the other hand, do not inject any traffic but only observe
traffic through traffic captures. These captures can range from full traffic traces to
sampled traffic. The main advantage of passive measurements is that they enable to
gather “real” traffic and thereby behavior. Thus, they also do not interfere with the
systems under investigation. Similar to active measurements, the availability and
choice of vantage points also challenge passive measurements. It is typically tough
to get access to these vantage points as there are significant privacy and operational
concerns. Additionally, when designing passive measurements, it must be taken into
consideration that the choice of vantage point significantly biases the study outcome.
For example, what is the user population that one observes, i.e., does one observe
actual users, machine-to-machine communication, or a mixture? At what time of
day is the study performed? So, passively measuring, e.g., the RTT to Web servers
at night could paint a drastically different picture than during peak hours (e.g., due
to more congested links).

Whatever the choice in methodology, Internet measurements should generally follow
basic ethical guidelines which we present in the following.



18 2. Background

2.2.1 Measurement Ethics

Since Internet measurements affect many entities, it is crucial to assess the conse-
quences and implications of the measurements onto the individual parties. These
range from technical, e.g., how fast should packets be generated, to social, e.g.,
which information should be stored, questions. One of the critical problems in
Internet measurements is that it is usually impossible to ask the involved parties for
consent; e.g., when scanning all of IPv4 for Web servers, it is impossible to contact
each and every operator upfront. Thus, Internet measurements should generally
not affect the operation, management, and costs of Internet services or networks,
i.e., measurements, especially active ones, should not exploit security vulnerabilities
or crash the involved systems. Furthermore, the privacy of user data should be
guaranteed, so it is common practice to either remove all privacy-related data or to
scramble it beyond reconstruction. In addition, since upfront consent is not possible,
one should provide opt-out mechanisms for operators, especially in the case of active
measurements. To this end, operators should be able to identify the nature and
origin of the measurement traffic effortlessly.

Durumeric et al. [DWH13] recommend seven practices for “good Internet citizenship”
when doing large-scale active Internet measurements:

• Close coordination with the local network administrators. This allows
assessing the risks of measurements by sourcing from the operational experience
of the local operator. It enables accounting for potential operator-side biases,
e.g., there might be firewalls or Web caches that can affect the measurement
itself. Further, it allows establishing means of handling inquiries.

• Verify that measurements do not overwhelm the network. This is to
make sure that the local, as well as the upstream provider, can handle the
traffic and that it does not affect the regular network operation.

• Signaling the benign nature. The machines from which the traffic originate
should provide websites that clearly state the purpose of the measurements.
Furthermore, reverse DNS (rDNS) entries should be used to hint at the benign
nature, e.g., looking up one of our measurement machines 137.226.113.8 yields
researchscan1.comsys.rwth-aachen.de as the hostname signaling its use as
a research machine. The measurement itself can provide further information,
e.g., the HTTP user-agent header that Web servers often report in their logs
can contain a website with additional information.

• Be precise about the measurements. In all communications, the scope
and purpose of the measurements should be clearly communicated.

• Provide simple means to opt-out. It should be easy for network operators
to opt-out from the measurements, and one should handle opt-out requests
promptly. For example, one can provide an email address with a template
stating the required information to opt-out of one of the measurement websites.



2.3. Internet Transport 19

• Conduct measurements no larger or frequent than required. The
measurements should accurately focus on the research objective to keep the
footprint low.

• Spread measurement traffic. Measurement traffic can be spread over time
and over multiple source addresses. While this partly contradicts with being
easily detectable and upfront, it is nevertheless a good idea to not overwhelm
networks with the measurement traffic.

In the measurements on which this dissertation builds, we have followed all of
these guidelines. In the following, we discuss the fundamental technologies that our
measurements target, starting with transport protocols.

2.3 Internet Transport

Transport protocols are a fundamental building block in the communication stack.
Traditionally, network engineers have implemented them in the operating system
offering different service primitives to applications. For this dissertation, we focus
on protocols that enable a reliable communication, i.e., protocols that are able to
deliver cohesive data in the order in which they were sent (in-order) and recover
from losses or transmission failures (fault tolerance). Reliable transport protocols
are necessary as IP only offers a best-effort hop-by-hop data delivery, i.e., IP does
not guarantee any data delivery. Nevertheless, many Layer 2 protocols are concerned
with reliable point-to-point transmission (but they are rarely used), i.e., they recover
from transmission errors. Still, a network building on reliable Layer 2 technology
may be subject to packet loss.

This susceptibility to packet loss is rooted in asynchronous nature in which networks
are operated. Today, each router that handles a packet must implement some form
of queues. First, to store incoming packets and then, after deciding how to forward
them, proceed to enqueue them in an egress queue that corresponds to the forwarding
decision. These queues already foreshadow the problem. Imagine a router with three
1Gbit/s interfaces. Now traffic from two of these interfaces must be forwarded to the
third interface. This forwarding poses no significant problem as long as the traffic of
both ingress interfaces does not exceed the data rate of the egress interfaces. However,
if now both ingress interfaces receive traffic at 1Gbit/s, 2Gbit/s must be transmitted
over a link with only 1Gbit/s data rate which is obviously not possible (regardless
of the available queue size). Thus, data in the egress queue will accumulate until
the queue is full, and, ultimately, force the router to drop packets. Increasing the
queue size solves the problem temporarily but eventually leads to the same situation
and offers no viable solution. Thus, even if networks were to use a reliable Layer
2 transmission, packets can be lost in Internet communication, and thus transport
protocols must handle these kinds of failures.

It is thus also a key concern of transport protocols to manage this congestion, i.e., to
dynamically react to changes in the network, which is generally known as congestion



20 2. Background

control (CC) that we discuss in more depth in Section 2.3.3. Today, networks have
queues to enable capturing bursts and handling temporary mismatches of data rates
such that the network utilization can be kept high. However, queues induce latency,
i.e., a packet must wait until all preceding packets are transmitted, and network
operators thus face the challenge of keeping a high utilization (which would be offered
by a big queue due to having many packets available for transmission) while having
fast transmissions through low queueing delays (which would be offered by small
queues due to short to no waiting times). To this end, research has worked on
router buffer sizing to investigate appropriate sizes for queues as well as on how to
manage queues efficiently going beyond simple drop-tail queues, which we discuss in
Section 2.3.4. As it turns out, the problem is not solvable in the routers alone and
requires an interplay between end-hosts implementing CC and the router queues.

We continue by describing the fundamentals of TCP as the de-facto standard transport
protocol of the Internet since the 1980s and QUIC, the current candidate to succeed
TCP for the Web and potentially other application areas.

2.3.1 The Transmission Control Protocol

The Transmission Control Protocol (TCP) was developed in the context of the
ARPANET, and one can find its initial specification in [RFC793] from 1981. Today,
over eight Requests for Comments (RFCs) specify its core functionality, 26 additional
RFCs exist that specify strongly encouraged functionality, and there are 20 further
RFCs specifying experimental extensions. Thus, we will refrain from providing a
holistic explanation of TCP, but we are going to refresh the bare minimum that allows
comprehending our TCP-based measurements in Chapter 3 and their motivation.
For further reading, we recommend the current effort [Edd19] of uniting the eight
core-documents to a single specification that is supposed to become RFC793bis.

TCP provides the bidirectional delivery of a reliable in-order byte stream between
two endpoints. To this end, TCP splits the data into several segments that are
in turn delivered in individual packets and on reception recombined in the right
order and handed over to the application process that is using TCP. TCP enables
its service through a stateful connection and meta-data that it transmits in the
header of every segment. During connection establishment, both parties exchange
vital information that allows them to derive a mutual connection state, which is the
foundation for data exchange and loss recovery.

Connection Establishment

TCP uses a three-way handshake, depicted in Figure 2.6a, to establish a pair of
sequence numbers for data enumeration and for data acknowledgment, which TCP
stores with the help of a transmission control block (TCB) in main memory. TCP
updates the TCB throughout the lifetime of the connection to, e.g., keep track of
unacknowledged bytes (UNA) or which bytes it should send (SND) or receive (RCV)
next (NXT). It uses a special header flag (SYN) to signal the desire to establish



2.3. Internet Transport 21

Client Server

SYN
seq: X

SYN/ACK 

seq: Y, ack: X
+1

ACK seq: X+1, ack: Y+1

initialize TCB:
IRS: X
ISS: Y
RCV.NXT: X+1
SDN.UNA: Y
SDN.NXT: Y+1
...

TCB:
ISS: X 
SND.NXT: X+1
SDN.UNA: X 
...

TCB:
ISS: X 
IRS: Y
SDN.UNA: X+1
SND.NXT: X+1 
RCV.NXT: Y+1
...

TCB:
ISS: X 
ISR: Y
SDN.UNA: Y+1
SND.NXT: Y+1 
RCV.NXT: X+1
...

(a) TCP’s 3-way handshake and resource
allocation.

Sender Receiver
Data: 1460 byte, seq: X+1

Data: 1460 byte, seq: X+1461

Data: 1460 byte, seq: X+2921

ACK, ack: X+1461

ACK, ack: X+2921

Data: 1460 byte, seq: X+4381
ACK, ack: X+2921

Data: 1460 byte, seq: X+2921

RT
O

ACK, ack: X+5841

(b) Simple data exchange in TCP with
transmission failure and retransmission
timeout (RTO) segment recovery.

Figure 2.6 TCP connection establishment and data exchange.

a connection. To signal correct SYN reception, each TCP endpoint acknowledges
the receipt of the other parties sequence number by mirroring the received sequence
number while increasing it by one.1 Thus, after the first segment, the receiver will
answer with its own sequence number while mirroring the received one adding 1
to it (thereby acknowledging the receipt and indicating the next sequence number)
and also setting the SYN flag. Finally, TCP again acknowledges the correct receipt,
yet, as both parties already exchanged the sequence numbers, this segment does not
carry the SYN flag. Now both hosts have successfully exchanged sequence numbers
from which they can now commence to relatively address bytes in the byte stream.
During the handshake, TCP further allows establishing additional optional state,
e.g., which maximum segment size (MSS) it likes the other end to use.

Data Exchange

To exchange data, TCP splits the stream into (ideally MSS-sized) segments. Each
segment carries one sequence number that reflects this segment’s first byte in the
overall byte stream (relative to the initially exchanged numbers). This number-
ing allows the receiver to bring received bytes into the right order as well as to
acknowledge their correct receipt. To this end, TCP acknowledges the last byte
that it received and was able to bring into gapless order by announcing the byte
it expects next, as shown in Figure 2.6b. In a widespread extension, TCP uses
selective acknowledgmentss (SACKs) to signal the reception of out-of-order segments
allowing for a more efficient retransmission mechanism. Notwithstanding, when
TCP does not receive an acknowledgment for its data after a specific time, the
retransmission timeout (RTO), TCP regards this segment as lost and will retransmit

1TCP actually uses the sequence number to enumerate the bytes in the byte stream; however,
there are instances where it is additionally used to signal correct reception of special segments such
as here in the handshake.



22 2. Background

it (again depicted in Figure 2.6b). In the so-called fast retransmit mode (not shown),
a TCP sender uses the reception of three duplicated acknowledgments (ACKs) as an
indicator that a segment was lost (e.g., due to a transmission error or a full queue).
Imagine a single packet loss in the middle of a train of ten packets. The subsequent
packets will be received, and TCP will send acknowledgments (useful especially with
SACKs). However, given the gap, TCP will acknowledge only up to the gap (also
shown in Figure 2.6b at the third ACK). The cumulative acknowledging thus results
in multiple duplicated ACKs which fast retransmit uses as an indicator for loss which
is significantly faster than waiting for the RTO which has a minimum time of 1 s,
thus orders larger than typical RTTs in the Internet.

Flow Control

As highlighted before, packet loss can be due to network congestion, but loss may
also happen at the receiver. TCP uses a buffer to store the reconstructed byte stream
such that the application using TCP can read it. When the data rate exceeds the
application’s read speed from this buffer, the buffer will eventually overflow, again
leading to losses. Such an overflow can quickly happen when a server sending data
has more processing power than a client receiving it. To determine an appropriate
rate at which TCP should send while not overflowing a receiver, TCP uses a flow
control mechanism. In each segment’s header, TCP announces the number of bytes
it is capable of receiving. When the buffer fills, TCP advertises that less space is
available and when the application has read the bytes from the buffer, TCP signals
that more space is available. This signal is called a window, and the sender must not
send more data than fitting in this window. To this end, TCP keeps track of the
unacknowledged bytes that it has already sent, i.e., bytes that will fill the window
soon, and bytes that it is still allowed to sent (within the window). Therefore, one
refers to this mechanism as a sliding window that opens up (for new bytes) when
new available buffer size is announced and shrinks when data is acknowledged, thus,
in the end, sliding over all bytes.

Connection Teardown

When one party decides to terminate the connection, it can signal that it will not
send any further bytes. Similar to the connection establishment, another flag is used
(FIN) to indicate that no further bytes will be transmitted. TCP again acknowledges
the receipt of this special flag by consuming a sequence number just as in the 3-way
handshake. After both parties have signaled that no more bytes will follow, the
TCP instances regard the connection as terminated and they can free the connection
state, e.g., the TCB. In case TCP receives a segment that it cannot associate to a
connection, e.g., after it terminated a connection, but unfortunately, the network
duplicated and delayed a packet, or the sender thought the final ACK was lost and
retransmitted the packet, TCP uses another mechanism to signal the reception of an
invalid segment. To this end, TCP sends an empty segment setting the RST-flag in
its header. An RST-receiving TCP knows that the original recipient was unable to
associate the packet and can thus also drop all state related to this connection. For



2.3. Internet Transport 23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port

Sequence Number

Acknowledgement Number
Data
offset

Reserved
C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window

Checksum Urgent pointer

Options

(up to 40 byte)

Figure 2.7 The TCP segment header according to RFC 793 and RFC 3168.

this reason, some TCP implementations make it easy for themselves and use RSTs
to terminate a connection.

Wire Format

TCP realizes its functionality with the help of a header that we depict in Figure 2.7.
Apart from ports identifying application processes on both sides, it contains sequence
and acknowledgment numbers. As the TCP specification restricts their space to 32 bit
each, TCP must handle overflows correctly. Further, a data-offset identifies where the
segment’s payload (i.e., the chunked byte stream) starts as the header can contain
up to 40B of options. These options are, e.g., used to signal each endpoint’s MSS.
A set of bits represents the different flags. For example, SYN for initial segments
during the handshake, ACK when an acknowledgment number is present, or FIN for
connection teardown. The TCP specification has also left additional space for future
extensions to these flags and requires implementations to set these flags to zero when
not used and to ignore them when received and unknown. The flow control window
is only 16 bit, thus allowing at most 64 kB to be in flight. Today, this is significantly
too small to fully utilize high bandwidth links; a TCP option called window scaling
can be used to define a multiplicator to this window allowing larger values. TCP
further possesses a checksum to check the data and header for correctness as well as
an urgent pointer which is rarely used and which we do not discuss further.

X over TCP and the Problems it Creates

TCP is the basis for nearly all Internet communication today with few exceptions.
Ranging from simple file transfer applications such as FTP, over BGP sessions to
the Web using HTTP on top. TCP is however especially challenged in areas where
high interactivity is needed and specifically where losses are actually tolerable. To
this end, e.g., online games demanding low latency are typically built on top of



24 2. Background

Sender Receiver
user kernel kernel user

seg 1
seg 2
seg 3
seg 4
seg 5
seg 6
seg 3

ack 1

ack 2

ack 2

ack 2
ack 2

ack 6

HoL
blocking
delay

Network

Figure 2.8 HoL in single stream transport protocols: A single lost segment, even though not
related to the other data items (color) blocks them on loss until a retransmission arrives and
data can be delivered in-order to the application. Please note that the segment numbers and
acknowledgment numbers do not follow TCP semantics and should just illustrate the sending
and reception of segments. Adapted from [MPF16, Fig. 1].

UDP as they can tolerate loss and do not require high data rates. However, as TCP
has been the only practically useable reliable transport protocol that ships with
every major operating system, the applications building on top of it have continually
evolved and today their mode of operation does not map frictionless to TCP. The
most prominent example is HTTP. When the Web evolved, it became apparent
that parallelization was very helpful, i.e., being able to request multiple resources in
parallel. With HTTP/1.1, browsers thus started opening multiple connections, which
is inefficient due to each connection having to perform a handshake and further, as we
will later see, have to compete against each other. HTTP/2 solves this inefficiency by
allowing browsers to multiplex several requests over a single connection, thus solving
the problem of multiple connections but creating a new one. As now independent
objects are mapped to a single TCP stream they suddenly become dependent on each
other as TCP has no means of differentiating them. Thus now, packet loss prevents
TCP from delivering subsequent segments to the application even though they could
contain independent resources. This is rooted in TCP trying to bring the byte stream
in order and to correct gaps which we illustrate in Figure 2.8. This behavior is
generally known as head-of-line (HoL)-blocking. In the figure, the application in
user space, e.g., HTTP/2, multiplexes individual objects (represented by different
colors) into a single TCP stream. While in practice segmentation of the stream is
up to the kernel, and thus objects of different color could mix into a single segment
further aggravating the problem, the problem already manifests when assuming that
segments only carry individual objects. The loss of Segment 3 blocks Segments 4
to 6 from delivery to user space because TCP’s mode of operation does not assume
independence of segments. This linkage is not a shortcoming of TCP but rather
manifests in the way TCP is used today, i.e., as a transport for individual messages
or multiple streams, which were never TCP’s design goals. HoL is one of the reasons
for many new transport protocol proposals such as QUIC which is the subject of the
next section.



2.3. Internet Transport 25

2.3.2 QUIC

QUIC, in comparison to TCP, is a new transport protocol for the Internet. It
was initially developed at Google and first shipped in Chrome’s developer preview
in 2013 [Iye15]. Back then QUIC was an abbreviation for Quick UDP Internet
Connections, and, as the name suggests, builds on top of UDP. Thus, even though
being a transport, it sits above the “traditional” transport layer. Therefore, one
usually implements it in user space, which allows updating the transport independent
from the operating system promising faster dissemination of new versions.
One of the driving reasons for its development was the ossification that network
protocols have seen (see Section 2.1). Google themselves have contributed significantly
to many transport optimizations, e.g., TCP Fast Open [RCC+11] that allows 0-RTT
data exchange in TCP. Nevertheless, the lack of deployability renders many new
protocols and extensions practically useless. Thus, QUIC’s design goals were to have
a deployable and evolvable transport that offers TCP-like functionality combining
decades of transport protocol research. QUIC tackles these goals by fully encrypting
its transport, i.e., including its headers. Thus, only the end-points are able to decrypt
the transport layer information, excluding any observer on the path with the goal
that no system can eventually ossify around the visible wire image. Within the
decrypted headers, QUIC is versioned (in contrast to version-less TCP). It further
has the ability to negotiate these versions for backward compatibility.
Similar to TCP, QUIC offers a reliable transport but, in contrast, allows multiplexing
individual byte streams over a single connection without introducing dependencies
and thus circumvents HoL-blocking. As QUIC is fully encrypted, it does not require
TLS on top and is generally able to exchange data after one RTT and can even be
used in 0-RTT mode when it has contacted a server before. Moreover, it enables
mobility as it does not bind a connection to the IP and port numbers but introduces
a separate connection ID, which further allows it to work seamlessly in the presence
of NATs. When, e.g., the client’s interface addresses change (e.g., when switching
from WiFi to mobile data), a server can associate the connection with the help of
the ID and the cryptographic context they already established.
After its introduction in 2013 and further development, Google approached the
Internet Engineering Task Force (IETF) to standardize QUIC in 2015. As of August
2020, the first IETF version of QUIC is on its last laps towards standardization2.
When referring to QUIC, we refer to both variants, either Google QUIC (gQUIC)
or IETF QUIC (iQUIC). iQUIC offers the same primitives as gQUIC but, while
sharing many principle ideas, they are two different protocols that are not compatible
with each other. During standardization, gQUIC, as implemented in Chrome, slowly
transitions to iQUIC.
Conceptually, QUIC is still very similar to TCP in that it performs retransmissions,
has flow control, and uses acknowledgments. Thus, we first take a look at how TCP
concepts have been applied in QUIC and subsequently illustrate the connection
establishment and version negotiation as a fundamentally different design. Finally,
we discuss which problems QUIC faces that were no issues for TCP.

2Which was also said a year earlier, so only time will tell the truth in this statement.



26 2. Background

1 X (7)

Version (32)
DCID Len

(8)

Destination Connection ID (0..2040)
SCID Len

(8)

Source Connection ID (0..2040)

(a) The long header

0 X (7)

Destination Connection ID (*)

(b) The short header
Figure 2.9 The iQUIC invariant headers according to invariants draft-06 [Tho19]. Bits marked
with an X are version specific. Numbers in parenthesis denote the possible size of each field in
bits. The asterisk signifies that the length is not specified as it has been established elsewhere.

TCP Concepts in QUIC and How They Differ

Similar to TCP, QUIC [IT19] has a header (actually it even has two headers).
However, they do not contain a whole lot of data. As the headers are subject to
change in future QUIC versions, a minimal set of fields is defined to be invariant,
i.e., will never change. We depict the long as well as the short invariant header of
iQUIC in Figure 2.9, and we will also continue to illustrate QUIC with the help of
the more recent iQUIC. QUIC uses the long header during connection establishment,
and once it has negotiated essential parameters such as the connection ID lengths, it
switches to the short header. Different QUIC versions can specify other headers that,
in the current drafts, are variants of the short or long header; e.g., there is a version
negotiation header or an initial header which are both derived from the long header.
As visible from the figures, QUIC does not carry ACKs or sequence numbers in its
header. Notwithstanding, QUIC does not even possess sequence numbers in the way
TCP does. This absence has multiple reasons. First, QUIC carries multiple streams
per connection, and thus, a single sequence number could not be used to enumerate
different byte streams. Second, TCP uses the sequence numbers, that number the
bytes, also for acknowledgments. This mechanism is different in QUIC; in QUIC
Version 1, each packet carries a unique and monotonically increasing packet number
that is independent of the byte streams. QUIC carries information regarding the
order of bytes and ACKs in so-called frames.

Frames. The content of a QUIC packet is made up of frames, as shown in Figure 2.10.
Frames can carry data (i.e., stream frames) or meta-data (e.g., ACK, crypto, or ping
frames). Stream frames carry the bytes of the individual streams and can be regarded
like the byte stream of a TCP connection. To this end, a stream frame contains
a stream ID, an offset where the bytes belong within the byte stream (optional if
at the stream start), and if the stream frame does not span up to the end of the
QUIC packet, it contains a length field denoting the size of the byte chunk that
follows. This information allows QUIC to bring the bytes of individual streams in
order before delivering them to the application.

Acknowledgements. Importantly, these offsets are not used to detect packet loss.
To this end, QUIC uses the packet numbers and ACK frames. In contrast to TCP,



2.3. Internet Transport 27

QUIC Version 1 Packet
Header = 0b01

Spin Bit

Dest Conn ID

Key Phase Bit

PN = 56

Stream Frame

Stream ID: 5
Offset: 1123
Length: 500

Application
Data

Stream Frame

Stream ID: 8
Length: 300

Application
Data

ACK Frame

Largest: 130
Ack Delay: 25ms
Range Count: 1
First Range: 1
Gap #1: 2
Range #1: 124

Figure 2.10 Example QUIC Version 1 packet with a short header and two stream frames and
an ACK frame. Dark gray parts of the packet are encrypted and thus not visible to a passive
observer. Figure adapted from [Iye19].

where retransmissions carry the same sequence numbers (as the original transmission),
in QUIC, retransmissions carry a new packet number. This unambiguity allows QUIC
to easily differentiate between retransmissions and out-of-order packets3. Further,
QUIC adopts the concept of SACKs from TCP (but allows up to 256 SACK ranges
instead of at most four in TCP) and does not possess a single ACK field anymore.
An ACK frame always acknowledges the largest received packet number, in contrast
to TCP where the last byte before the first gap is acknowledged4.

Notwithstanding, only announcing the largest received packet number is not helpful
alone. A QUIC endpoint uses the first ACK range field (see Figure 2.10) to signal
how many contiguous packets it received preceding the largest received packet. In
the example, this means that QUIC received packets 130 and 129 as the range is only
1. More ranges can follow as denoted by the ACK range count field (in the example
just one range follows). This range now denotes that there is a gap of three packets,
i.e., 128, 127, and 126 are missing, encoded as the value two (because, 128−126 = 2).
It furthermore denotes that there are 125 contiguously received packets preceding
this gap, thus packets 1 to 125 were received (again encoded as 125− 1=124).

Retransmissions. When QUIC detects a packet as lost, e.g., Packet 126 from
the example, the stream frames it contained were lost, and, as QUIC is a reliable
transport, QUIC must retransmit them. However, as we have already noted, QUIC
will not just retransmit the packet with the same packet number, but instead, it uses
a new packet number for this. It will not even retransmit all of the packet’s contents.
For example, it is of no use to retransmit outdated ACK frames, or data of a stream
that has been closed in the meantime. To this end, QUIC will only retransmit the
data that is still needed by the other end. In this example, QUIC should retransmit

3In TCP, a retransmission may look alike the original transmission which makes it difficult to
regard a packet as lost and not just out-of-order for appropriate CC actions.

4ACK frames further carry a timestamp that denotes how much time has passed since receiving
this largest packet number. Similar to TCP, QUIC allows delaying ACKs. The timestamp then
allows knowing for how long, enabling more precise RTT estimations as the delay can be subtracted
out.



28 2. Background

the stream frames in a new packet with a new unique packet number. It could
further add a new ACK frame with more up to date information if space permits.
An ACK frame will eventually notify the sender when the retransmitted content
is successfully received. Due to the fact that QUIC never retransmits old packets
and only retransmits content, gaps in the packet number space will never close.
As the ranges are limited, QUIC will eventually stop reporting specific gaps when
it is sure that the other end has successfully received the information about the
gap. The QUIC standard does not define how an implementation must do this.
Notwithstanding, since every packet is acknowledged, QUIC even acknowledges the
receipt of the ACK frame5. Thus, each end-point knows when which information
was received and can act accordingly and stop reporting this information.

Flow Control. QUIC’s flow control mechanism does, in principle, not differ from
TCP, i.e., the receiver informs the sender about its buffer status. There is a
connection-wide flow control that offers a global limit of bytes it can receive. But
further, each stream has an additional unique flow control limiting the stream’s
bytes. In contrast to TCP, QUIC signals these windows (called maximum allowed
data in QUIC) for each flow control with the help of individual frames, and thus,
they are not always present. For calculating the still allowed number of bytes that
QUIC can send/receive on a stream, QUIC uses the largest sent/received offset in a
stream, as potential gaps in front are already committed in the buffer for out-of-order
receptions.

While there are many more details and new concepts in QUIC that are not present in
TCP, we refrain from an in-depth discussion here and direct the reader to the RFCs
as QUIC literature is scarce. For this dissertation, understanding the motivation and
core concepts is imperative. However, as we are going to investigate the use of QUIC
in the Internet (Section 3.2), we will make use of the connection establishment and
the version negotiation, which we will discuss next.

2.3.2.1 Version Negotiation and Connection Establishment

As QUIC is supposed to be evolvable, it needs a way to negotiate which version of
QUIC it wants to use during connection establishment. QUIC does this with the
help of the invariant header, which we depict in Figure 2.9a, and the version field
contained in it. Thus, when a QUIC receiver receives an attempt to establish a
connection, it can inspect the version field to determine if it supports this version.
In case it cannot support it, the receiver will send a version negotiation packet6,
which is a long header packet with a zeroed version field having attached a list of 4B
versions that the end-point supports. This list may also contain reserved versions
that no QUIC endpoint will ever support in an attempt to get implementors to parse
this list correctly.

5QUIC has a mechanism to stop it from acknowledging only ACKs such that an ACK ping-pong
is prevented.

6The version negotiation packet is of course also invariant across all QUIC versions.



2.3. Internet Transport 29

Client Server
Initial, DCID=X, SCID=Y, PN:0, CRYPTO (Client Hello), PADDING

Handshake, DCID=Y, SCID=Z, PN:0, 

CRYPTO (Server Hello)

Handshake, DCID=Y, SCID=Z, PN:1, 

CRYPTO (Certificates, Cert. Verify, Finish)

Handshake, DCID=Z, SCID=Y, PN:0, CRYPTO (Finished), ACKPayload, DCID=Z, PN:0, STREAM

(a) QUIC 1-RTT handshake and data
exchange after the first roundtrip.

Client Server
Initial, DCID=X, SCID=Y, PN:0, CRYPTO (Client Hello[PSK])0-RTT, DCID=X, SCID=Y, PN:0, STREAM, PADDING

Payload, DCID=Y, PN:0, ACK
Handshake, DCID=Y, SCID=Z, PN:0, 

CRYPTO(Finished), PADDING

Initial, DCID=Y, SCID=Z, PN:0, 

CRYPTO(Server Hello), ACK

(b) QUIC 0-RTT connection establishment
that allows exchanging data within the first
roundtrip.

Figure 2.11 QUIC connection establishment using either 1-RTT or 0-RTT setup. Please note
that the QUIC packets may contain additional information, especially, transport parameters are
exchanged, which we do not display to keep readability.

Informed about the supported versions, a client can select a version it also supports
and commence a new connection establishment. QUIC offers two different modes of
connection establishment that either take 1-RTT or 0-RTT, as shown in Figure 2.11.

1-RTT Setup. When QUIC has never had contact with an end-point before (e.g.,
when initially visiting a website), QUIC uses a 1-RTT connection establishment
(Figure 2.11a). An Initial message carries a TLS 1.3 client hello and announces a
source connection ID. The server typically replies with two handshake messages,
reporting its own source connection ID, and completing the TLS handshake with a
server hello and the certificates that are usually larger than a single packet. After this,
the client acknowledges the previous message and also send a handshake message7.
As both parties have now established cryptographic credentials, the client can directly
send further messages containing data (carried on a stream), notably these message
can already contain the short header.

0-RTT Setup. However, 0-RTT connection establishment (Figure 2.11b) is only
possible after having had a previous connection. Now a client can again send an
Initial message, yet this time, it can include a pre-shared key from the previous
connection. This cryptographic material allows the client to directly send a second
message (if space permits, this may even be in the same packet) that contains
encrypted 0-RTT data on a stream frame. The server must nevertheless finish the
handshake by sending a server hello (certificates must not be transmitted again)
acknowledging the Initial message from the client and subsequently sending a Finish
message completing the handshake. At the same time, the server can answer with
payload, e.g., at least acknowledging the client’s byte stream.

7Please note that Initial, Handshake and Payload messages operate in their own packet number
space and thus packet numbers seem to reoccur.



30 2. Background

Notably, 0-RTT connections are vulnerable to replay attacks [FG17], which challenges
their applicability in the Internet at large. These replay attacks are less of a concern
when the packet’s content cannot modify any state since the network will not deliver
the answer to the attacker, nor would she be able to decrypt the answer. In HTTP,
such a request is called idempotent. It is however not possible for the transport to
differentiate idempotent from non-idempotent data and thus 0-RTT should only be
used in safe environments or the application using QUIC must implement replay
protection on top. Thus, 0-RTT has the potential of seeding up connections but
should be used with caution to not suffer from replay attacks.

Still, there are further challenges to QUIC as we will discuss next.

2.3.2.2 Challenges for QUIC

QUIC is mostly challenged by the fact that it must work on top of UDP which has
been playing a neglected role in the Internet since only DNS was heavily using it.
We will now highlight four major challenges for QUIC that stem from the fact that
it hides all signaling information and is deployed on top of UDP.

QUIC and NATs

As QUIC operates over UDP and must work with IPv4 and thus with NATs, it
must handle NAT rebindings. For TCP, a NAT usually tracks the connection
establishment and releases a mapping on teardown, in addition to implementing
large timeouts, as a safeguard, to eventually release the mapping. As there is no
connection establishment in UDP, UDP mappings can only be handled by timeouts
when idling. However, Hätönen et al. [HNE+10] found that UDP timeouts often do
not follow IETF specifications of being longer than 120 s and are thus more aggressive
than those for TCP. QUIC tackles these short timeouts through periodic pings to
not idle for too long and alternatively connection migration kicks in, this is, however,
only possible when the device behind the NAT sends data and not vice versa.

Transmission Efficiency

Similarly, discovering the available path maximum transmission unit (PMTU) is
challenging in QUIC. While it is in principle similarly challenging in TCP, network
operators are effectively using middleboxes for PMTU discovery with the help of
TCP’s MSS option. Middleboxes on path will just lower (clamp) the MSS value
during connection establishment to a value that allows fitting segments into the
maximum transmission unit (MTU) of their network. While this violates the end-to-
end principle, this effectively allows efficient PMTU discovery. In QUIC, middleboxes
cannot mingle with the transport headers by design and thus are not able to “help”
in this case. Therefore, the QUIC standard suggests a minimum MTU that must be
supported by the path and suggests to implement some form of PMTU discovery,
e.g., [FJT+19].



2.3. Internet Transport 31

Network Monitoring

Network operators thus far have used middleboxes to, in their eyes, enhance and
monitor the transport. Notably, the monitoring aspect has given rise to many
concerns by network operators. With TCP, operators use packet traces to measure
RTTs or losses with the help of the unencrypted headers (e.g., inspecting holes in
the sequence number space or measuring the time until packets are acknowledged).
In contrast, QUIC hides this information from the operators through encryption.
Thus, operators cannot rely on using the network traffic itself to determine the key
performance indicators (KPIs) of their network and are effectively operating the
network blindly. It took over two years of discussion in the IETF until consensus was
reached to expose a single bit to the network, the SPIN bit (see Figure 2.10) that
allows a passive observer to determine the RTT. A network operator can track the
state of this bit, and client and server either mirror or invert this bit on reception to
create a rectangular signal whose period then corresponds to the RTT. De Vaere
et al. [DBK+18] proposed to use further bits for loss detection. However, these
proposals could not reach a consensus which highlights the difficulty and fear when
standardizing a protocol that should not ossify.

Rate Limiting

An additional issue with UDP is that it is sometimes rate-limited by operators. UDP
does not implement CC, in contrast to TCP and QUIC as we will discuss in the next
section, and can potentially easily overload a network. Operators safeguard this by
deploying rate-limiters or shapers that limit a UDP flow’s data rate. Nonetheless, as
QUIC implements CC, these limits hinder its efficiency. It is mostly unknown how
prevalent UDP rate-limiting is in the general Internet, but Google reports [LRW+17]
that they found instances of rate-limiting during their QUIC deployment.

As CC today is likely one of the most essential components of transport protocols
governing the efficiency and fairness of Internet transport, we are going to discuss it
next.

2.3.3 Congestion Control

Congestion Control (CC) is a fundamental building block in today’s transport
protocols that strongly influences the performance of data transmissions. In contrast
to flow control, which protects the receiver, CC was built in the 1980s to counteract
the congestion collapse of the early Internet [RFC896], i.e., it is used to avoid
overwhelming the network. CC introduces a purely local congestion window (cwnd)
that limits the number of unacknowledged bytes in flight to not congest the network.
Thus, with CC, a transport may send the minimum of the flow control window
and the cwnd. A CC algorithm governs the evolution of the cwnd subject to
algorithm-specific congestion signals. Since its inception, CC has been an active field
of research and has recently seen promising new developments with BBR [CCG+16b]
or Vivace [DMZ+18].



32 2. Background

Given the plethora of different algorithms that have been developed, only two have
RFCs, NewReno [RFC6582] and CUBIC [RFC8312]. CUBIC is TCP’s default CC in
Linux and is often the baseline to which other algorithms compare themselves. The
basis for these CCs lies in [RFC5681], commonly referred to as Reno, which defines
four intertwined mechanisms that together build the basis for CC algorithms: slow
start, congestion avoidance, fast recovery, and fast retransmit. We will discuss slow
start and congestion avoidance as they are fundamental for safe transport operation.

Slow Start

At the start of a connection, the two end-points are generally unaware of the path
that their packets will take through the Internet. Thus, they do not know the
available bandwidth or latency, and even if they had a previous connection, the
path might have changed in the meantime. Transports use slow start, in contrast
to what its name suggests, to quickly probe the path for bandwidth. To this end,
slow start grows the cwnd exponentially by increasing the cwnd by the number of
acknowledged bytes in every roundtrip. This increase effectively doubles the cwnd
after each roundtrip. One fundamental property of slow start is the initial cwnd
(IW), i.e., the size of the cwnd when the connection starts, as it sets the basis for the
exponential growth which we investigate in detail in the next chapter. [RFC5681]
defines the IW to be between two to four MSSes (depending on the exact segment
size), but other RFCs exist that recommend different values. A transport protocol
leaves slow start when it detects congestion or reaches a predefined threshold (which
is typically derived during a connection and new connections can be seeded with
it). Depending on the exact algorithm, congestion can be measured differently, e.g.,
CUBIC uses loss as a congestion signal; in contrast, BBR uses increases in delay
as a signal. Notwithstanding, when congestion is detected, the transport generally
switches to congestion avoidance.

Congestion Avoidance

In congestion avoidance, the algorithm tries to slowly probe for additional bandwidth
while trying to minimize its aggressiveness. When it detects congestion, it reduces
the cwnd. Since congestion may resolve when other flows leave a congested link, a
CC must also constantly probe for newly available bandwidth, typically by increasing
the cwnd. To this end, a popular class of congestion avoidance algorithms uses
additive-increase multiplicative-decrease (AIMD) in congestion avoidance, which is
characterized by a linear increase and exponential decrease on congestion, resulting
in the well-known cwnd sawtooth behavior of, e.g., TCP.

In the following, we describe three popular algorithms, i.e., Reno, CUBIC, and BBR.

2.3.3.1 Reno

Reno [Jac90] is an enhancement to Tahoe [Jac88], the first CC algorithm, but they
only differ in small details that however have significant performance impacts. Reno



2.3. Internet Transport 33

0.0 10.0 20.0 30.0 40.0 50.0 60.0
Time [s]

0

50

100

150

200
cw

nd
[P
ac
ke
ts]

Figure 2.12 Reno’s cwnd in a network with a min. RTT of 60ms, a queue size of 50 packets
and 50Mbit/s link speed.

uses packet loss as a congestion signal in TCP. It further uses timeouts (RTOs) as a
signal for major congestion and duplicated ACKs as a signal for minor congestion.

Slow Start

Reno’s slow start basically follows the generic slow start that we explained earlier.
During slow start, Reno grows the cwnd exponentially by increasing it in every
roundtrip by the number of acknowledged bytes. It exits slow start when reaching a
threshold (the slow start threshold (ssthresh)) or when any form of congestion, i.e.,
major or minor, is detected.

Congestion Avoidance

In congestion avoidance, Reno grows the cwnd by one MSS (additive-increase) in
every roundtrip, and when detecting major congestion, it sets ssthresh to half of
the bytes in flight but at least to two MSSes. It then switches back to slow start
setting the cwnd to an IW of one MSS. Similarly, when the connection has idled,
i.e., no bytes have been transmitted for at least one RTO, it also goes back to slow
start. However, when minor congestion is detected during congestion avoidance,
Reno departs from Tahoe’s behavior and switches to so-called fast retransmit.

Fast Retransmit and Fast Recovery

A TCP receiver should generate duplicated ACKs when receiving out-of-order seg-
ments. Out-of-order segments can mean two things. First, the segments are reordered,
or second, a packet was lost, and thus, all following packets show a gap and appear
out-of-order. Fast retransmit interprets three duplicated ACKs as a signal for loss
which the sender should repair. On the first two duplicated ACKs, the sender may
release two new segments when the bytes in flight are still below the cwnd but
allows overbooking the cwnd by two additional MSSes. On the third duplicated
ACK, it sends the segment that appears lost without waiting for the RTO. Further,
it sets ssthresh to half of the bytes in flight as before. Reno then switches to fast



34 2. Background

Time

80

100

120
cw

nd
Congestion Detected
Remember Wmax = cwnd

Fast growth back to Wmax

Almost no growth around the last congestion event

Probe for more bandwidth

Wmax

Figure 2.13 Evolution of the cwnd in CUBIC according to its cubic function. After a minor
congestion event, the cwnd is reduced by a factor of 0.7. Subsequently, the function quickly
probes for bandwidth. Around the last congestion event, there is nearly no increase. Finally,
CUBIC again starts looking for bandwidth.

recovery to repair further losses until a non-duplicated ACK is received. TCP does
this by inflating the cwnd to ssthresh plus three segments (i.e., the segments that
have generated the duplicated ACKs before) to release further segments. For each
additional duplicated ACK received after the three, the cwnd grows by one MSS
allowing to potentially release new data. Finally, fast recovery ends when previously
unacknowledged data is acknowledged setting the cwnd back to ssthresh (effectively
halving the previous maximum bytes in flight before the loss, i.e., multiplicative-
decrease) to deflate the overbooked cwnd again and then switches back to congestion
avoidance. This results in Reno’s characteristic sawtooth as visualized in Figure 2.12.

Reno defines a basic set of algorithms that allow safe transport operation. However,
it may suffer from a couple of inefficiencies. To this end, NewReno is a modern
enhancement to Reno that better handles the presence of SACKs which are very
common in today’s TCP implementations. We continue to look how CUBIC modifies
Reno in light of high bandwidth networks.

2.3.3.2 CUBIC

Reno’s linear increase by one segment in congestion avoidance is often too small
for networks that have a high bandwidth delay product (BDP), i.e., either a high
bandwidth, high delay, or both. For example, when bandwidth becomes available
(e.g., due to another flow leaving), Reno’s growth is too low to utilize the network
efficiently. CUBIC [RFC8312] in that regard modifies several parts of Reno; most
important is the change in congestion avoidance that lends CUBIC its name. It uses
a cubic function (visualized in Figure 2.13), i.e., having a steep (concave) incline
followed by a plateau where the function changes the profile to a convex incline to
further grow the cwnd. It still performs multiplicative-decrease but remembers the
previous cwnd to calculate a function that has a plateau at exactly the previous
cwnd (Wmax in Figure 2.13). Thus, CUBIC grows super linear towards the previous
cwnd and probes for additional bandwidth using its convex profile.



2.3. Internet Transport 35

0.0 10.0 20.0 30.0 40.0 50.0 60.0
Time [s]

0

500

1000
cw

nd
[P
ac
ke
ts]

Figure 2.14 CUBIC’s cwnd in a network with a min. RTT of 60ms, a 200 packet queue and a
50Mbit/s link.

Further, CUBIC modifies the multiplicative-decrease factor by which the cwnd is
lowered from 0.5 to 0.7, which makes it more aggressive. We visualize CUBIC’s cwnd
evolution in Figure 2.14. CUBIC is designed in a way to perform similarly to Reno
in networks with smaller delays, and thus when CUBIC’s increase is less than that
of Reno (which can happen with small RTTs), CUBIC falls back to Reno’s behavior.
There are additional suggested changes in CUBIC that further alter its behavior in
comparison to Reno, e.g., it may use a limited slow start [RFC3742] or hybrid slow
start [HR08] which are both designed to be less aggressive than the traditional slow
start.

CUBIC, as well as Reno, use loss as a congestion signal. We will now look at BBR
that uses delay as a congestion signal.

2.3.3.3 Bottleneck Bandwidth and Round-Trip Propagation Time

Loss-based CCs have an inherent weakness, i.e., they operate at the upper end of the
network bottleneck’s buffer. As filling the buffer increases the delay, loss-based CCs,
by design, maximize the delay in the bottleneck buffer. During AIMD they continually
fill the buffer until it overflows and a packet is lost; after the multiplicative-decrease,
the process starts again.

In contrast, delay-based CCs try to operate at the lower end of the buffer and use
an increase in delay (i.e., filling of the queue) as a signal for congestion. While filling
the buffer allows one to increase the cwnd further, data is not transmitted faster as
a router must stores it in its queue. In an ideal world, a buffer would only contain a
single packet at every point in time. This allows high utilization as there is always
a packet to send, but at the same time, low latency as there is at most one packet
transmission worth of waiting time.

Bottleneck bandwidth and round-trip propagation time (BBR) [CCG+16b]8 in this
regard tries to model the network’s path and the bottleneck by estimating the true
minimal RTT and the bottleneck bandwidth, i.e., the maximum data rate offered by

8We regard BBRv1. BBRv2, as released in July 2019, is out of the scope of this dissertation.



36 2. Background

0.0 10.0 20.0 30.0 40.0 50.0 60.0
Time [s]

0

250

500

750

1000

Pa
ck
et
s

Rate CWND RTT

0

40

80

120

160

RT
T

[m
s]

Figure 2.15 BBR’s cwnd, packet rate and RTT in a network with a min. RTT of 60ms, a
1000 packet queue and a 50Mbit/s link. BBR’s bandwidth estimate is derived from the packet
rate and the RTT.

the network’s bottleneck. Assuming both are known, the optimal cwnd is the product
of both, and then one can release the cwnd with the rate of the bottleneck. This data
rate, in theory, results in precisely the ideal behavior. Figure 2.15 shows the typical
behavior of a BBR flow; the cwnd is rather constant, and BBR constantly probes
the bandwidth. Please note that BBR is, by default, configured to overestimate the
BDP to better cooperate with loss-based CCs. In the following, we discuss how BBR
deals with challenges in real networks such as variable delays, the co-existence with
other (loss-based) CC algorithms, and changing network paths.

Estimating the max. Bandwidth: ProbeBW

To calculate its sending rate, BBR counts the bytes that it is able to transmit in
an RTT: rate = bytes acknowledged

RT T
. At a certain point, regardless of the cwnd, the rate

will not increase any further as BBR has met the bottleneck’s bandwidth. BBR
uses this observation during congestion avoidance in what is called ProbeBW to
increase the sending rate for one roundtrip every eight roundtrips (see the continuous
up and down of the rate in Figure 2.15). If this increased sending rate results in
quicker delivery of all bytes (i.e., the bottleneck did deliver it at that rate), new
bandwidth has become available and then BBR assumes this to be the new bottleneck
bandwidth. In case the sending rate did not increase, BBR has built up a queue
in the bottleneck (it did send too fast) and in turn reduces its rate for one RTT to
drain the queue it created, before returning to the original rate prior to the probing.

Estimating the min. RTT: ProbeRTT

Further, BBR needs to reevaluate the RTT from time to time. To this end, it uses
a method called ProbeRTT when it has not detected a reduction in the RTT for
10 s (see the drops in RTT to min. RTT in Figure 2.15). To investigate if a queue
has formed, it reduces the cwnd to four packets for at least 200ms (see the drops in
cwnd in Figure 2.15). Since it does not change the rate at which packets leave the
sender, it will just drain the bottleneck queue, which allows minimum RTT estimates.
When BBR thus detects that the queue was full, it transitions back to ProbeBW as



2.3. Internet Transport 37

it must likely reduce the rate. Otherwise, the queue was empty, and there is likely
more bandwidth available. When this happens, it switches to Startup.

Slow Start: Startup

Startup replaces slow start but mimics its behavior. BBR adjusts the data rate and
the cwnd by a factor of 2/ln(2) which allows smoothly increasing the data rate by
a factor of two every RTT, thus closely matching the original slow start growth.
During this increase, BBR searches for a plateau in the delivery rate, i.e., the point
where increasing the rate and the cwnd does not yield improvements in the delivery
rate. At this point, BBR has reached the bottleneck rate; algorithmically BBR exits
Startup when there is no increase above 25% within three roundtrips (the plateau).
However, Startup may have overshot the actual bottleneck bandwidth, and hence, it
switches to the Drain phase to remove any queue that it might have built.

Drain is similar to ProbeBW as it changes the data rate. However, it now uses a
data rate that is 1/(2/ln(2)), i.e., the inverse of Startup, to remove a standing queue.
As BBR already has an estimate of the bottleneck bandwidth and the min. RTT
(from the 3-way handshake or a smoothed estimate generated during Startup), it can
also calculate an estimate for the BDP. BBR leaves Drain when the delivery rate
has reached the bottleneck bandwidth and when the bytes in flight are smaller or
equal to the BDP and switches to ProbeBW.

The BBR draft [CCY+17] goes into great depth on how estimated values should be
filtered and on how the cwnd should overestimate the BDP to work well on realistic
Internet paths. One central property of BBR is that it controls the data rate rather
than only controlling the bytes in flight, controlling a sender’s data rate is generally
known as pacing in CC, which we investigate next.

2.3.3.4 Burstiness and Pacing

Most CC algorithms immediately release new data upon ACK arrival. This mech-
anism builds on top of the observation that a transport eventually generates an
ACK-clock. When a large number of packets is sent, they are eventually shaped by
the bottleneck’s departure rate. Thus, the receiver will generate ACKs corresponding
to this rate and eventually this also smoothes the sending of new segments.

Still, when large numbers of ACKs arrive shortly after each other, a CC releases a
burst of data. This can happen in the first round of slow start, when no ACK-clock
is available since the protocol did not exchange any data yet. It may also happen
when a sender reinitiates sending after a period of idle (e.g., when using DASH video
streaming) or when multiple ACKs are compressed to a single ACK (a “feature” of
some middleboxes). These busts are undesired since they may cause packet loss in
the intermediate buffers and have led to increasing buffer sizes (which may cause
higher latencies).

To counteract this burstiness, a CC or transport protocol can thus use pacing to
spread out the departure of data over a more extended period. As we have seen



38 2. Background

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time [s]

0

100

200

300

400

500

Pa
ck
et

Nu
m
be
r

Using pacing
Without pacing

Figure 2.16 A paced and an unpaced Linux TCP flow at 50ms RTT. Each dot represents a
packet sent. The paced flow is not as bursty as the unpaced flow. Please note that both flows
burst the first ten packets and that the pacer is configured to only distribute the packets over
a part of the RTT, i.e., the Linux default behavior.

before with BBR, BBR releases packets such that it meets the bottleneck’s data rate
and thus, in essence, it actually paces the data.

Figure 2.16 visualizes a paced and an unpaced TCP flow using CUBIC shortly
after connection establishment. Without pacing, a transport releases its cwnd only
bound by the central processing unit’s (CPU’s) or network interface card’s (NIC’s)
processing speed. Assuming a typical 10Gbit/s server NIC, data is released such
that packets have an inter-packet spacing corresponding to the 10Gbit/s data rate.
As visible in the figure, the unpaced flow shows bursts of packets at the start of
each roundtrip. In contrast, the paced flow spreads the packets throughout the RTT.
Only after several RTTs, the ACK-clock starts evening out the bursty nature of the
unpaced flow.

When unpaced data hits a bottleneck, e.g., at an end-user that only connects at
50Mbit/s, the buffer in front of the 50Mbit/s link must be able to absorb the burst,
i.e., it must be bigger than actually necessary. Generally, it can be advantageous
to have a slight burstiness in the data depending on the used medium access and
technology. For example, wireless links such as 802.11 perform frame aggregation,
i.e., they take, for example, two packets and transmit them as one frame over the
channel, increasing the efficiency. When now packets are not available for aggregation
due to too large inter-packet gaps, the efficiency might go down. Thus, depending
on the access technology, it makes sense to use pacing but to pace trains (e.g., pairs)
of packets.

In Section 2.3.4, we take a look at queueing and buffers in general but before, we
regard CC fairness.



2.3. Internet Transport 39

0 10 20 30 40 50 60
Time [s]

0

10

20

30

40

50
Th

ro
ug

hp
ut

[M
bi
t/
s]

Figure 2.17 Two CUBIC flows compete for bandwidth, a red flow enters after the blue flow
has already occupied the 50Mbit/s link. The darker, more focused lines, show a 1 s rolling
average of each flow’s rate, while the lighter colors denote a rolling average over 100ms. It
takes over 60 s for both flows to roughly reach an equal share of the available bandwidth.

2.3.3.5 Fairness

CC governs the utilization of a link and its buffers. When multiple flows share the
same bottleneck, it is generally desirable to have them share the resources in a fair
manner.

This resource allocation usually boils down to a flow-rate fairness, i.e., all flows at
that bottleneck should have a fair share of the available rate. Flow-rate fairness is
not a good metric for fairness in general as it does not recognize the nature and
purpose of the flow [Bri07]. For example, the flow-rate of a short 1 s flow compared
to a long-running flow of several hours should most likely get more than half of the
bandwidth for this short time. This is motivated by taking a look at the utility of
both flows. The short flow is likely interactive and requires swift processing, i.e.,
when it takes 2 s to complete, it may already offer bad performance. While it is
likely not relevant for the long flow that takes several hours if it is inflated by an
additional second. Thus, Briscoe [Bri07] argues that one should judge the fairness by
the costs that are induced by the individual flows, e.g., costs could be loss or delay
induced to the other flow. Using costs turns out to be practically challenging as
there is generally no means to quickly establish them, which is the reason why most
research still judges fairness according to flow-rates as it is a simple and intuitive,
yet often misleading, metric.

In this dissertation, we also follow the notion of flow-rate fairness, as we have no
better means of judging the costs involved. Typically, CCs are judged with regard
to their TCP friendliness, i.e., how they behave when they compete with CUBIC (as
Linux’s default) or Reno (as the IETF’s baseline). Figure 2.17 shows the flow-rates of
two CUBIC flows. One has already hogged all bandwidth (blue) when a second flow
enters (red). We observe that, over time, both rates equalize; nevertheless, it takes
over 60 s to do so. In this example, both flows follow the same path, and thus, their
transmission latency is the same. Generally, when two flows experience the same



40 2. Background

RTT, they should get exactly the same share of the available bandwidth. When the
RTTs are different, many CCs share their rates linearly proportional to the inverse of
the RTT ratios. This observation is rooted in the fact that each CC can only change
the cwnd roughly every RTT since it simply takes so much time until it is aware of
any change, e.g., detect losses. Thus flows with a shorter RTT can react quicker to
loss (i.e., reducing their cwnd) but also get swifter feedback (i.e., ACKs increasing
the cwnd). Whether or not such a bandwidth sharing is desirable is debatable. This
relation means that flows with a large RTT typically get a smaller share than flows
with a short RTT.

Interestingly, Hock et al. [HBZ17] have shown that BBR does not follow this principle
and flows with a large RTT typically (at least when the buffer is large enough) get a
higher share, because the calculated BDP is also higher. This also show that fairness
critically depends on the buffer size and queuing discipline; we will revisit both in
the next section.

2.3.4 Router Queues

Each router requires a buffer, i.e., a fixed size of memory. First, to store incoming
packets, and subsequently, after deciding on the next-hop, to enqueue the packet
to an egress buffer where each packet must wait for transmission. Buffers allow
absorbing temporary mismatches in data rates and small bursts. Their size limits the
burst extent and effectively influences the link’s utilization and the queuing delay.

Looking at a small example, assuming a 10Gbit/s link and a buffer of size 10MB, it
takes 8ms to send all bytes it contains. Thus, one could argue that the maximum
queuing delay is rather short. However, using a 10MB buffer for a 1Gbit/s would
lead to a maximum queuing delay of 80ms. Thus, this would inflate the maximum
queuing delay by a factor of ten. Within these 80ms, light in a fiber optic cable
could travel 16 205 km, thus roughly from New York to Sydney. Yet, if the packet is
stuck in the buffer, it travels 0 km in the same time which is obviously undesirable.
It is thus critically important to chose appropriate buffer sizes.

2.3.4.1 Buffer Sizing

There have been many works on buffer sizing. We will shortly go through the three
most important findings following the summary presented in [GM06].

Rule of Thumb: BDP

The rule of thumb states that a buffer size should be sized according to the BDP,

B = RTT × C

i.e., the RTT (two way propagation time) times the link’s capacity (C). This relation
intuitively stems from the observation of a single TCP flow as we have shown in



2.3. Internet Transport 41

Figure 2.12. The cwnd follows the sawtooth, and a TCP can send exactly B bytes in
this period, i.e., the distance from peak to peak of the sawtooth. Thus it requires
exactly a buffer of size B to never run out of packets, i.e., have 100% link utilization.
Villamizar and Song [VS94] have shown that for a small number of flows with the
same RTT (up to eight in their experiments), the loss events synchronize for all
flows (i.e., their sawteeth synchronize as well). This means that they will lower their
cwnd at the same time, leading to a temporarily underutilization of the link’s ingress
queue. Given that the globally observed sending pattern (i.e., their sawteeth) is
precisely similar, the same (large) egress buffer is still required as in the single flow
setting to keep the link utilized.

Small Buffer Rule: BDP/
√
N

The small buffer rule by Appenzeller et al. [AKM04] challenges this observation for
a larger number of long-lived flows. Here, the flows do not synchronize, causing their
sawteeth to add up to a constant flow of data. They show that it is sufficient to
reduce the rule of thumb by the factor 1/

√
N, where N is the number of long-lived

flows going through the buffer. Knowing N in practice is challenging and can likely
only easily be applied to Internet core routers, where the number of long-lived flows
is huge. Taking a look back at our example from earlier, the 1Gbit/s link would
require exactly 10MB buffer when we also assume an RTT of 80ms. Additionally,
assuming that 100 long-lived flows go through the queue, the buffer size reduces to
only 1MB, and thus, the maximum queuing delay also goes down to 8ms, in turn,
light in fiber would only allow traveling from New York to Minneapolis.

Tiny Buffer Rule: O(logW)

The tiny buffer rule stems from the dream of all-optical switches, i.e., switches that
do not convert optical signals to electrical signals and back. Building buffers for such
switches is technically challenging, and tiny buffers are thus desirable. Enachescu
et al. [EGG+06] have shown that buffers in the order of only tens of packets are
possible when sacrificing some utilization.
However, they demand that the flows are non-bursty, i.e., they perfectly pace their
packets across their RTT. In this setting, they show that a buffer size in the order of

O(logW)

with W being the maximum cwnd size of the flows going through the buffer, is
possible. Ganjali and McKeown [GM06] report from experiments where a buffer of
only 20 to 50 packets for a 1Gbit/s link under realistic workload was enough and
only a small performance degradation was observed. They further argue that (core)
networks are typically not operated at 100% utilization, and thus, the performance
penalty would be even smaller.
All of these sizing rules assume a simple drop-tail queue. Today, there are more
advanced queuing disciplines that themselves can help in reducing delay and conges-
tion.



42 2. Background

Average Queue Length
0

20

40

60

80

100

Dr
op

Pr
ob

ab
ilit

y
[%

]

m
in

th

m
ax

th

Drop probab
ility rises lin

early

Figure 2.18 RED drops packets starting from a lower threshold (minth). The probability of
a drop then increases proportionally with the average queue length; starting from an upper
threshold (maxth), all packets packets are dropped.

2.3.4.2 Active Queue Management

As we have seen, sizing router buffers is not simple and involves knowing where
the buffer is used and what traffic is to be expected. This difficulty is expressed in
what is known as bufferbloat [GN12], i.e., the deployment of overly large buffers.
Router manufacturers have traditionally sold rather large buffers as link utilization
was a key metric that should be optimized. Only the recent years have fostered the
understanding that low latency is crucial for many modern Internet applications.

To this end, Active Queue Management (AQM) tackle the problem from another
angle and replaces the simple FIFO drop-tail queue with a queue that follows an
algorithm in deciding when to drop a packet, sometimes also referred to as a smart
queue. AQMs thus allow congestion management.

There have been various proposals for different AQMs. We shortly introduce the
ideas behind the first AQM called RED, then look at the state-of-the-art with CoDel
and finally regard how we can achieve a fair queuing.

RED

Random Early Detection (RED) [FJ93] is an algorithm that uses the average queue
size to determine a probability to mark or drop a packet9. The idea is to keep the
average queue size at a certain level to ensure utilization while keeping an upper
bound on the queuing delay. Figure 2.18 shows RED’s drop behavior subject to
increasing average queue length. Starting from a lower bound, RED increases the
drop probability in proportion to the average queue length. When reaching an upper
bound, every packet is dropped or marked.

This increasing drop probability seems intuitive; when the queue fills, more congestion
happens, and thus, more packets should be dropped to give feedback to the end-hosts.
The calculation of the average queue length is, however, rather involved as short time

9Marking is used with explicit congestion notification (ECN) to signal congestion instead of
immediately dropping the packet.



2.3. Internet Transport 43

bursts should not significantly impact the average queue size. To this end, Floyd and
Jacobson propose a low-pass filter to determine the average queue length. Further,
while the idea is to increase the drop probability, drops should be evenly placed
to avoid a global synchronization of the flows as well as a bias towards individual
flows. To this end, the actual probability calculation further includes the number of
non-dropped packets since the last drop.
Luckily, RED is one of the few AQMs that are available in commercial routers. On
the downside, it suffers from a high degree of parameterization (e.g., low-pass weight
and thresholds), making it practically difficult to tune RED for a specific workload.
CoDel tries to overcome these issues by providing a “knob”-free queuing discipline.

CoDel

Jacobson himself (one of RED’s creators) later acknowledges [Jac06] that average
queue length is an inadequate measure for congestion. He notes that small differences
in the TCP implementations, while all being correct, result in vastly different average
queue sizes and concludes that average queue length bears no meaning for demand
or load. To this end, Nichols and Jacobson [NJ12] present Controlled Delay (CoDel)
(pronounced “coddle”) that provides a tuning-free algorithm that they build on the
notion of good and bad queues. This notion basically follows the same rationale as
BBR, i.e., sending more than the BDP will only cause a standing queue and thus
latency in steady-state. Generally, a queue is bad when it is a standing queue, i.e.,
always having a size above 0 or 1 packet. A good queue, in contrast, is a queue that
may temporarily be high (e.g., due to a burst in slow start) but then wholly drains
to 0 or 1 packet within an RTT (the ACK clock will control the sending rate).
CoDel tries to detect these bad queues and drop packets to reduce the flows’ rates
such that their cwnd closes in on the BDP. The authors argue that a persistent (i.e.,
bad) queue can be tracked by observing the packets’ sojourn time, i.e., the time the
packets have spent in the queue. A key is to track the (local) minimum sojourn time
and not an average because if there is a packet with no queuing delay, there cannot
be a persistent queue (but the average queue length could still be high). Hence,
CoDel tracks the minimum sojourn time over an interval, and if it does not stay
below an acceptable minimal sojourn time (called target) within this interval, the
queue is considered a bad queue. The interval thus denotes the time it takes to drain
the largest burst, which in turn relates to a flow’s RTT and thus is set according to
the maximum expected RTT across the connections.
Therefore, it is not entirely true that CoDel has no knobs. Jacobson however shows
that a target of 5ms (actually ideally 5% to 10% of the RTT) and an interval of
100ms (actually the maximum RTT) work well over a wide range of link rates, RTTs,
and traffic patterns.
With the help of the local minimum sojourn time, CoDel can detect a persistent
queue, but it still needs to act to drive it towards target. CoDel increases its drop
rate slowly until the persistent queue goes away. To this end, when a persistent
queue is detected, it calculates the next drop time as

next_drop_time = t+ interval/
√
count



44 2. Background

Credit

Credit

Credit

Credit

Credit

good queues

bad queues
...

...

DR
R 

de
qu

eu
e

by
flo

w
ha

sh

Figure 2.19 FQ-CoDel workflow. First, a flow is hashed to a queue. Queues are either good
or bad. Good queues are served first using DRR and dequeuing itself is handled via FQ-CoDel.
Good queues can become bad queues and vice versa.

with t being the time of the last drop and count denoting the number of drops since
dropping started. Thus, when the number of already dropped packets rises, the next
drop times get shorter and shorter to give more feedback when it takes more time to
get to target. CoDel stops dropping packets when the sojourn time meets the target.

More rationals behind CoDel can also be found in [RFC8289]. However, CoDel or
RED do not guarantee a fair packet scheduling, which we investigate next.

Flow Queuing using Deficit Round-Robin

So far, all queuing disciplines disregard the bandwidth share of individual flows going
through them. For example, RED will drop packets when the average queue length
increases for all flows even though some of them might not even contribute to a
standing queue.

To this end, we regard one way of reaching a fair queuing that is used in flow queuing
(FQ)-CoDel [RFC8290], which ultimately uses deficit round-robin (DRR) [SV96].
First, one ideally needs exactly one queue per flow (or per whatever one wants to
reach fairness against). This requirement becomes practically challenging, and thus,
one usually takes a fixed set of queues and uses hashing to enqueue flows into these
queues.

The main idea is now, as in DRR, that each queue has a byte credit (with a fixed
initialized size) that it is allowed to dequeue whenever it is this queue’s turn to
transmit packets. When the byte credit reaches zero, the algorithm adds a quantum
to the queue’s credit, but it has to relinquish its dequeuing opportunity, and another
queue may transmit bytes worth its credit. Thus, the algorithm serves each queue in
a round-robin fashion but caps the number of bytes that it dequeues.

At this point, FQ-CoDel (visualized in Figure 2.19) departs from classic DRR
and adds another hierarchical layer that classifies the different queues. FQ-CoDel
differentiates between old queues that have built a backlog and new queues that



2.3. Internet Transport 45

did not transmit packets in the last round. This differentiation allows prioritizing
short flows over long flows. At first, FQ-CoDel takes a look at the head of the new
queues list. If the queue’s credit is negative, i.e., it recently transmitted all its credit,
FQ-CoDel adds the quantum and moves the queue to the tail of the old queues
list. Otherwise, it serves the queue, and once it served all new queues, FQ-CoDel
continues with the old queues in the same fashion, i.e., if the credit is negative,
FQ-CoDel adds it to the end of the old queues again adding the quantum. The exact
dequeue routine for each queue is just CoDel itself. If CoDel finds that an old queue
has no packets to dequeue, i.e., the queue is empty, it moves it to the end of the new
queues, and the process starts over.

Adding the queues to the end of the respective lists ensures that other queues do not
starve and that FQ-CoDel processes them before an already served queue. We will
use FQ-CoDel in the last part of Chapter 3, which follows next.



46 2. Background



3
Deployable Transport Optimizations

In this chapter, we tackle our first research question, namely, what is the impact of
Internet giants on Internet transport evolution?

As we have explored in Section 2.1, the Internet is considered ossified around the
initial design of transport protocols. Still, transport protocols significantly impact
the performance of Internet communication and specifically the Web.

Especially the Transmission Control Protocol (TCP), as the foundation of modern
transport, is known to be extremely difficult to extend in a deployable manner.
For example, Google initially proposed TCP Fast Open in 2011 [RCC+11] and the
Internet Engineering Task Force (IETF) standardized it in 2014 [RFC7413] in hopes
of offering reduced connection setup times through a cookie mechanism. Figure 3.1
shows the support for TCP Fast Open in Internet Protocol Version 4 (IPv4) on port
80, which we measure every week by recording hosts that respond to the Fast Open
option. The figure shows that, initially the overall support was minimal but grew
steadily over time. Nevertheless, a significant concern is the number of Internet
Protocol (IP) addresses that answer with an invalid cookie which is likely stripped
by middleboxes, or some hosts implement the option improperly. While the relative
number of IP addresses has significantly gone down, as of August 2019, there are still
over 76k IP addresses that cause an invalid cookie response. We did not check whether
or not requesting the option will later hinder the communication with those hosts.
However, a practical example with the RWTH Aachen University’s firewall showed
that while we are successful in negotiating the option, later communication fails as
the SYN/ACK packet may already acknowledge data, and thus its acknowledgment
(ACK) number increases by more than the SYN, causing our firewall to drop the
packet and stalling the communication. Of course, other firewalls may show similar
but also other flaws.

To this end, many optimizations to TCP today are end-host only optimizations,
meaning one can apply them to one end of the connection only without requiring



48 3. Deployable Transport Optimizations

21.J
ul 20

15

06.F
eb 2016

24.A
ug 2016

12.M
ar 20

17

28.S
ep 2017

16.A
pr 20

18

02.N
ov 2

018

21.M
ay 2

019

Date

0.00

0.25

0.50

0.75

1.00

Sh
ar
e

0.0

837.7K

1.7M

2.5M

3.4M

#
Su

pp
or
tin

g
IP
s

Share Valid
Share Invalid
Total # IPs

Figure 3.1 TCP Fast Open support in IPv4 on port 80. Please note that there were no scans
from January 2016 to August 2016.

changes to the other party. These changes are often parameters of well-known
functionality or changes to algorithms that TCP uses internally. To this end, a recent
proposal named recent ACK (RACK) [CCD+19] departs from traditional packet
or sequence counting for loss-recovery and solely used the notion of time to detect
loss. It is sufficient to implement RACK on the sender and thus does not require
changing the wire image or the receiver. A similar, heavily discussed parameter
of a TCP connection is TCP’s initial congestion window (IW), which is the topic
of our first contribution (Section 3.1) in this chapter. Similar to RACK, it is a
sender-only change that, however, significantly impacts the performance of short
Web flows. We chose this particular feature to investigate how TCP has adjusted
to the changes in infrastructures and connectivity. Within our first contribution,
we strive to understand how IWs are used in the Internet at large, i.e., in all of
IPv4 as well as specifically by Internet giants which we suspect to fine-tune this
parameter. Our measurements enable us to understand how Internet practice evolved
and whether or not Internet reality matches standardized practices.

Second, we shift our focus to a radical redesign of the transport layer with QUIC
which is currently pushed forward by some Internet giants. By focussing on QUIC,
we are able to judge how new developments affect Internet operation and thereby
complement our previous investigations of TCP. Traditionally, TCP headers have
been used to measure loss, reordering, and the round-trip time (RTT) of flows in a
network. QUIC is said to significantly challenge the operation of (mobile) networks
as it is a fully encrypted transport hiding all relevant headers from a passive observer.
In Section 3.2, we design measurements to investigate the birth, global deployment,
and key players of this new Internet protocol. We further analyze QUIC’s traffic
share using several network traces to investigate who uses QUIC and whether QUIC
already challenges network operators today. Subsequently, we shine a light on whether
QUIC offers the promised performance increases in comparison to TCP and whether
humans are able to perceive these differences. Fueled by our previous contribution,
we put a special emphasis on whether a TCP parameterized in the way currently
used by Internet giants, makes a difference when doing this comparison.



49

Finally, Section 3.3 regards the principal property of every transport protocol, i.e.,
congestion control (CC) and how it practically affects the resource sharing in today’s
Internet. We investigate how Internet giants operate their CC to shine a light on
how single big players influence the Internet landscape and the principles on which
the Internet operates. We further show how individual users can regain control in
this highly distributed system to enable fair and low latency resource sharing. By
focussing on CC, we bring the essence of the previous contributions together enabling
us to judge beyond individual protocols.

These three contributions thus deliver one view to our initial, continuously unfolding,
question how Internet giants evolve Internet transport. We, however, have to
overcome several key research challenges (apart from designing the measurements
themselves) in this chapter to answer this question which we highlight in the following.

Research Challenges

• How are we able to perform transport protocol measurements at an
Internet-scale?

As we want to grasp the deployment of transport protocol features in the
Internet at large, we need to design our measurements in a way such that they
scale to billions of systems in a timely manner. This becomes increasingly
difficult if the features that are to be tested are features that can only be
observed through behavior and are not explicitly negotiated.

• How much scanning is enough?

As we have highlighted in Section 2.2.1, scanning may have an impact on the In-
ternet and the networks that we are scanning. Specifically, if the measurements
go beyond a simple one-time packet exchange, we need to investigate how we
can reduce the impact of our scans while maintaining the value and expres-
siveness. This further enables to regularly probe the Internet for the features
involved, and thus, allow us to witness its evolution on a small time-scale.

• How do we measure the (human-perceivable) performance of a trans-
port protocol?

With our Internet-wide measurements, we uncover how a transport is used, but
we lack the insights into how the individual configurations actually affect the
performance. To this end, we need to find ways to attest the performance of
the transport protocols, especially comparing the different parameterizations.
Further, while such performance measurements may show an advantage when
looking at pure technical metrics, it is unclear whether or not these performance
increases actually make a difference. For example, do website visitors have a
different quality of experience (QoE) when using the different transports?

• How can we measure Internet-scale distributed algorithms in a con-
trolled and comparable setting?



50 3. Deployable Transport Optimizations

As we have discussed in Section 2.3.3.5, CC fairness critically depends on RTT.
Thus, to investigate how Internet giants impact CC, we must enable eye-level
comparisons for actual Internet deployments.

We now dive into our first contribution and analyze how TCP’s long-debated IW is
practically configured in the Internet at large and by Internet giants in particular.



3.1. Small Change, Big Effect – TCP’s Initial Congestion Window 51

3.1 Small Change, Big Effect –
TCP’s Initial Congestion Window

The Internet and specifically the Web have transformed the way we gather information,
interact, or do business. This increasing dependence on the Web has fueled a pursuit of
researchers and operators to develop and implement Web performance optimizations.
For example, Google has pushed several improvements to Web technology, including
new protocols such as Hypertext Transfer Protocol (HTTP)/2 (through SPDY) or
QUIC (see Section 3.2), both of which have found swift adoption [VSN+16, RPD+18,
ZRW+17] by others. Apart from technological advances, content delivery networks
(CDNs) have changed the Internet on an architectural scale (see Section 2.1). Their
ongoing quest to serve Web content from nearby servers has flattened the hierarchical
structure of the Internet [GAL+08, LIM+10], thereby promising lower latencies. In
pursuit of performance, CDNs are known to be early adaptors of new technology in
an attempt to optimize the Web experience for their customers.

While adopting new technologies offers promising gains, their correct configuration is
often challenging — e.g., HTTP/2 server push was a highly anticipated feature but
is now known to be notoriously hard to use [ZRW+17, ZWH17, ZWH+18]. Some of
these configuration challenges stem from the fact that they are dependent on network
and application characteristics.

One long-debated performance configuration parameter is TCP’s (and QUIC’s) initial
congestion window (IW) size. The IW characterizes the performance at the beginning
of a new connection and is a vital component of all CC algorithms. The IW size
bootstraps the congestion window (cwnd) and thus controls the amount of unac-
knowledged data sent at connection start and thereby heavily influences the start-up
behavior of new and particularly short-lived connections (e.g., typical Web transfers)
or those that are revived from idle. A small IW can prolong transmissions and cause
unnecessary latency as the transport protocol needs to await feedback (ACKs) to
increase the cwnd. Contrary, too large IWs can lead to loss and retransmissions
when the network cannot handle large bursts of data. Thus choosing the optimal
value for each network is critical for high performance — and thus interesting for
CDNs.

Despite its relevance, the IW size is typically regarded as a static parameter whose
IETF-recommended size should fit all networks and applications. Since its first
definition to one segment in 1988 [Jac88], its recommended size has only changed
twice, to two to four segments in 1998 [RFC2414, RFC3390] and — motivated by
increasing access speeds and its promise to shorten page loading times [DRC+10] —
to ten segments in 2013 [RFC6928]. Flores et al. [FKB16] recently showed that IW
customization helps to reduce CDN latency. In this regard, a small-scale study by
CDNPlanet showed that half of the probed CDNs use IW10 as the IETF-recommended
size, while others already use larger IW sizes [CDN17]. Others, e.g., [All15], even argue
to abandon static IETF-standardized values for the IW to enable customization
already in the standards. Nonetheless, little is known about IW configurations,
especially in case of Internet giants such as CDNs.



52 3. Deployable Transport Optimizations

In this contribution, we broadly probe IPv4 hosts and specifically CDNs to gather
an empirical understanding of how IW customization already takes place in today’s
Internet. We investigate the prevalence of IETF-recommended values in samples
of IPv4 for over three years. Further, we investigate CDN IW configurations from
globally distributed vantage points and from our University’s network, thereby
shedding light on the degree of customization that CDNs show today. Our results
show that the Internet at large converges towards the current IETF recommendation
of ten segments. On the other hand, we observe that IW customization beyond
standardized practices is already common practice, and there exists a gap between
standardization, research, and Internet reality.

Driven by this gap, we further investigate the effects of this new Internet reality
on the performance of slow start when competing against other flows. To this end,
we seed a testbed study by our real-world observations and investigate the start-up
performance benefits and disadvantages when the traditional CUBIC (see 2.3.3.2)
and the recent bottleneck bandwidth and round-trip propagation time (BBR) (see
Section 2.3.3.3) CC have to compete for traffic against an elephant flow10. Our
findings indicate that the way CDNs utilize IW customization can indeed yield
drastic performance increases. Specifically, this section contributes the following:

• The first long term analysis of the evolution of IW configurations in IPv4. Our
results show a convergence towards the IETF-recommended values at Internet-scale.

• We provide a comprehensive analysis of current IW configuration practices of
CDNs. We show that IWs are configured up to ten times larger than recommended
by IETF’s current experimental standard.

• Further, we find multiple CDNs which use customized IW configurations, i.e.,
deliver data using different IWs for different customers or service types. We
observe that larger IWs are, for example, preferred for streamed video instances,
yet, content types do not necessarily enforce specific IW settings.

• By analyzing IWs through different geographically distributed networks, we find
instances of network-dependent IW configurations of CDNs.

• We investigate the burstiness of IWs and find that some CDNs utilize pacing to
space out packets over time during slow start, potentially reducing the chance of
losses.

• Our measurements show different configurations of packet pacing, challenging the
traditional notion of IWs, we find that a data rate better captures the demand on
a network than a fixed number of segments.

• We build a testbed to evaluate our real-world observations in a controlled environ-
ment; we find that increasing IWs can increase or hurt performance, specifically,
our investigations show that increasing the IW should go hand in hand with TCP
pacing to actually benefit.

Structure. The remainder of this contribution is structured as follows. Section 3.1.1
discusses related work and shows how IWs are defined, standardized, and how they
impact performance. Section 3.1.2 introduces our IW scanning methodology, IP-
address-based IPv4 scans, and the resulting changes to our scanner architecture to

10An elephant flow, in contrast to a mice flow, is a long-running flow that seeks to maximize its
bandwidth



3.1. Small Change, Big Effect – TCP’s Initial Congestion Window 53

investigate CDNs. Following, Section 3.1.4 to Section 3.1.6 paint the global CDN IW
configuration space by discussing CDN specific IW configuration. In Section 3.1.7,
we project our real-world findings to a testbed and investigate its impact on flow
start-up behavior. Finally, Section 3.1.8 concludes our findings.

3.1.1 TCP’s Initial Congestion Window

We start by exploring TCP’s IW: i) how it is defined and sized, ii) how its size
influences flow completion time (FCT), and iii) how related works have gathered an
understanding on IWs through Internet measurements.

IW Definition. TCP’s IW governs the number of unacknowledged bytes in flight
until the first acknowledgment is received. That is typically data sent in the first
roundtrip of a connection after TCP has completed the three-way handshake. Thus,
the IW at the sender-side and the receive window at the receiver-side define the
application’s data rate at the start of the connection and bootstraps the window
doubling during slow start. Furthermore, depending on the CC algorithm, the IW
is also used after long idle periods for restart (e.g., in Web browsers when using
HTTP/2).

IW Size Definition. The IW is typically defined in bytes and often operating
systems allow configuration of the IW in multiples of the maximum segment size
(MSS). To this end, many Requests for Comments (RFCs) (here at the example
of [RFC6928]) define a dualism for the IW, either in terms of the multiple of the
MSS, e.g., IW10 for ten segments worth of data, or by an upper limit of bytes, e.g.,
14 600B typically corresponding to a classic full ethernet frame minus TCP and IP
headers times the multiple.

3.1.1.1 Testbed Study: Impact of IW Size on Internet Performance

To highlight the impact of different IW sizes on Internet performance, we conduct
a testbed study. The testbed involves two directly connected Gigabit Ethernet
Linux hosts whose link bandwidth and latency are controlled by NetEm in each
host. We select four bandwidth configurations (i.e., 4, 7, 26, and 100Mbit/s) and
three delay configurations (i.e., 30, 100, and 250ms) to reflect typical Internet access
characteristics reported by Akamai [Aka16]. We further choose six IWs: 4, 10, 16,
20, 32, and 50 segments, to reflect the current standard of 4 segments [RFC3390],
the current IETF recommendation of ten segments [RFC6928], and larger IWs. In
each experiment, we transfer a single flow of size 71 kB, i.e., 50 frames of data (the
average size of the Google landing page in 2017). For each configuration, we repeat
each experiment 30 times.

Flow Completion Time. Given its relevance to Web browsing, we first measure
the TCP flows’ average FCTs (AFCTs) subject to the different parameters (i.e., IW
size, RTT, and bandwidth). We define the AFCT as the average time to the last byte
of the flow. Figure 3.2 shows the AFCT and its standard deviation for the different
parameters. It shows that increasing the IW reduces the AFCT if the link speed or



54 3. Deployable Transport Optimizations

4 10 16 20 32 50
Initial Window

0.00

0.03

0.06

0.09

0.12

0.15

0.18
AF

CT
[s]

RTT 30ms

4 10 16 20 32 50
Initial Window

0.0

0.1

0.2

0.3

0.4

RTT 100ms

4 10 16 20 32 50
Initial Window

0.00

0.25

0.50

0.75

1.00

RTT 250ms

4Mbit/s 7Mbit/s 26Mbit/s 100Mbit/s

Figure 3.2 AFCT when varying bandwidth, latency, and IWs. Horizontal lines mark roundtrips.
Larger IWs can improve the latency.

4 10 16 20 32 50
Initial Window

0

20

40

#
Av

er
ag
e
Re

tra
ns

QLIM 4 pkts

4 10 16 20 32 50
Initial Window

0

20

40

QLIM 16 pkts

4 10 16 20 32 50
Initial Window

0

20

40

QLIM 32 pkts

4Mbit/s 7Mbit/s 26Mbit/s 100Mbit/s

Figure 3.3 Losses increase when increasing IWs depending on bottleneck bandwidth and queue
sizes. Benefits of increased IWs are highly network-dependent.

RTT is sufficiently high. For low bandwidth connections with low latency, larger
IWs have effectively no impact on the AFCT as these connections are limited by
throughput. However, when higher speeds are available, increased IWs can effectively
shorten the required roundtrips to finish the data transfer — a key motivation for
CDNs to configure larger IWs.

Retransmissions. Large IWs, however, yield more bursty traffic that can lead to
temporary phases of congestion more easily, reflected in higher loss rates. To highlight
this effect, we conduct a second experiment which measures the average retransmission
rates of the TCP flows subject to different bottleneck link configurations. We realize
this setting by now connecting the hosts via a bottleneck router with different
bandwidth capacities and queue sizes (QLIMs) of a regular drop tail FIFO queue.
We again transfer 71 kB and vary the IW configurations for each bandwidth, queue
size, and IW triple, testing every configuration 30 times. We show the average
retransmissions required and standard deviation in Figure 3.3.

As the figures show, increasing the IW can have detrimental effects on the connection.
We observe that larger IWs cause higher loss rates when either the bottleneck band-
widths or the bottleneck queue sizes are too small. Considering the retransmissions
for the smallest queue size, we can see that large IWs cause heavy losses. Increasing



3.1. Small Change, Big Effect – TCP’s Initial Congestion Window 55

the queue size helps in buffering the IWs, yet at the cost of added latency, e.g., a
7Mbit/s link with a buffer of 16 packets can add up to 27ms of delay to a packet.
Thus, simply increasing the queue size is not the desired solution as we have already
discussed in Section 2.3.4. While these motivating measurements neglect multiple
users sharing the bottleneck, loss-based congestion control of multiple users will lead
to full queues all of the time leading to tight buffer space for new flows as shown in
these measurements.

Takeaway. Our study shows, similar to related works [DRC+10, Sch09] that the
IW size can strongly influence flow performance but can also overload congested or
low-bandwidth connections. It is thus key to CC to correctly set an IW that adequately
balances throughput and loss to bootstrap a TCP connection.

3.1.1.2 Related Work

The relevance of TCP’s IW size is reflected in extensive debates and a successive
evolution of its value in the TCP standards over the last decades. Initially, in
1988, Jacobson [Jac88] set the IW to one segment, and nine years later, [RFC2001]
standardized it. [RFC2414] experimentally extended this setting to two to four
segments (or 4380B) in 1998 and [RFC3390] later made it a proposed standard — a
setting that remained untouched for a decade. Motivated by the increase of network
access speeds and the desire to reduce Web page loading times, [DRC+10] proposed
in 2010 and later [RFC6928] recommended to increase the IW to ten segments in
2013. Most recently, Allman [All15] even argues for abandoning a specification of
the IW size and thus arguing to end a decades-long debate about its precise value
in the standards. This argument is motivated by allowing hosts to configure more
tailored IWs.

Given the relevance of the IW on both flow completion times and Internet traffic
burstiness leading to losses, an empirical study of the IW is necessary to understand
current network performance aspects. This understanding has been gained in both
active and passive measurement studies. Concerning active measurements, Medina et
al. [MAF05] probed 85 k servers in 2004 and found most servers to be on an IW of one
or two with only 1% of hosts having an IW larger than four. Our measurements are
similar to those of Medina et al. in terms of methodology. In contrast, we specifically
target CDNs, which were still on the rise in 2004 and did not have as much of a
footprint as they have today. Regarding passive measurements, Qian et al. [QGM+09]
inferred IW distributions from several traces in 2009. While their dataset covers
traces captured in a diverse set of networks and also covers non-publicly visible hosts,
they did not discuss the impact of CDNs in their study. A small-scale study by
CDNPlanet [CDN17] probed 15 CDNs via HTTP and found six to use IW10 and
others to use larger IWs. Our work is similar to that of CDNPlanet, we share the
same goal to shed light on CDN IWs, but their methodology (manual inspection
of packet traces) limits a broad assessment of CDN IW configurations which is one
focus of this contribution. An unknown vantage point and limiting TCP receive
windows further limits the comparability of their study to ours.



56 3. Deployable Transport Optimizations

Our Prober Probed Host
SYN [WIN=65k,WS=4,MSS=...]

SYN, ACK
ACK, REQUEST
ACK, SEG 1

SEG n
SEG 1

ACK n+1, WIN=2 · MSS
SEG n+1
SEG n+2

RST

Estimate MSS
Timeout
RetransmissionEstimate IW=n

Verify IW full

Figure 3.4 Scan procedure: MSS and large receive window are announced and no ACKs are
sent until a retransmission. The estimated IW is the #bytes received before the retransmission.

The idea of pacing TCP flows (see Section 2.3.3.4) goes back to the observations of
ACK clocking in [Jac88] which motivated pacing in [VH97] to clock data until ACKs
arrive, but Aggarwal et al. [ASA00] were the first to study it extensively. Their
simulative results employ a non-bursty pacing implementation, and their focus is
on long-lived connections in contrast to the impact of pacing at the start of the
connection. Similarly, work on router buffer sizing [EGG+06] has shown that tiny
buffers can only be realized when some form of pacing is used (see Section 2.3.4),
an observation that we qualitatively validate. Wei et al. [WCL06] replicate many
experiments from [ASA00], e.g., with different TCP variants, and their simulations
show that the CC algorithm itself has a tremendous impact. Motivated by this, we
rely on the emulation of real implementations to study how pacing affects the slow
start behavior, in this regard TCP Jump Start [LAJ+07] is similar by abandoning
an IW and simply pacing out all data. Again, this work bases on simulations, to
the best of our knowledge, the behavior of Linux’s pacer has not been analyzed in
academic work, which we contribute.

3.1.2 Measuring IWs

We begin by summarizing our IW size estimation approach. To also enable mea-
suring CDNs, we will then extend our scheme to also account for virtualization by
incorporating per-CDN target uniform resource locators (URLs) and hostnames.
This specialization is needed to fetch large content from CDNs for IW estimation.
We next describe its general procedure and details that we modify to account for
CDN properties.

For explanation, we split the IW estimation procedure (visualized in Figure 3.4)
into four phases: First, we perform a regular TCP handshake announcing the
largest possible receive window (rwnd) of 65 kB and, to account for overly large IWs
configured at some CDNs, also a window scaling option (shifting the window by
three bits) to never block the data transmission due to flow control. Since IWs can
be configured depending on the MSS, we additionally set an MSS (varied by later



3.1. Small Change, Big Effect – TCP’s Initial Congestion Window 57

measurements). No further options like Selective Acknowledgements, which can, e.g.,
cause TCP tail-loss probes that would challenge IW estimation, are activated.

After establishing the TCP connection, the second phase starts by transmitting a
request in hope to trigger a response that exceeds the configured IW at the probed
host. The probed host will now commence sending the requested resource. However,
we are not going to generate acknowledgments for any segment that we receive, and
thus, the cwnd does not increase from the IW, and the host can only send as many
bytes as the IW.

By not acknowledging segments, the probed host will eventually initiate a retrans-
mission of the first, from its point of view, lost segment, which heralds the start of
the third phase. Either, the IW limited the sending host, or it ran out of data to
send. To test for this, we start acknowledging the last segment enabling the host
to continue sending data, and if the host does so, we know that the host did not
run out of data. At this point, we can estimate the IW by observing the sequence
number space and segment sizes that we received before the retransmission.

Finally, the last phase consists of tearing down the connection with TCP’s RST
mechanism. As this IW estimation methodology fails when tail-loss occurs (i.e., loss
of the last packet in IW), we recommend performing multiple scans of the same host.

Implementation&Validation. We implement our approach in go-lang (source
available at [Rüt18c]) to benefit from its multiprocessing capabilities and also in
ZMap [DWH13] (source available at [Rüt17]). To test both implementations and to
validate the correctness of the IW estimation, we run them in a Mininet [LHM10].
We use iptable’s statistic module to drop packets at the head, within, and at the
tail of the IW to validate the estimation correctness, i.e., correct estimations for the
first two, and a reduced IW for the latter case (tail-loss). Further, we vary the IW
size and available bytes on the server-side and the announced MSS at the probing
client to validate non-standard IWs and out-of-data situations in various settings.
Our tools always estimated the IW correctly except for tail-loss (as expected).

3.1.3 Measuring IW Configurations in the Wild

We start exploring TCP IW configurations in IPv4 using an implementation based on
ZMap. Looking at all of IPv4 allows painting a holistic picture of the IW deployment
world-wide. However, as we will see, it cannot test CDNs properly. Our ZMap
tool builds on top of two request models that are motivated by their large scale
availability in the Internet, i.e., HTTP and Transport Layer Security (TLS).

3.1.3.1 HTTP-based IW Inference

Our methodology relies (see Figure 3.4) on performing a request that should trigger
a large transmission from the probed target. To generate sufficient response data,
we base our first IW inference method on probing HTTP servers. Our motivation
lies in the widespread deployment of HTTP as the major application layer protocol,



58 3. Deployable Transport Optimizations

which thus provides a strong candidate for our IW scans. According to [ACF+12],
HTTP accounts for over 50% of traffic at a major European Internet exchange point
(IXP) and, according to our scans, we can successfully exchange data with ≈ 48.3M
hosts on port 80. For the same reasons, HTTP was used in prior works to infer the
IW size, e.g., Padhye and Floyd [PF01] or Medina et al. [MAF05]. Both works can
only ensure large enough responses that fill the IW by providing URL lists defining
an appropriate request for each probed host. However, an extensive assessment of
the entire IPv4 space is not feasible by relying on prior knowledge. Consequently, we
propose an extended approach that allows inferring the IW of HTTP servers without
any prior knowledge such as precompiled URL lists triggering large responses.

Our proposed approach is as follows; we initially request the root (/) page hoping
that it contains enough payload to fill the IW. As we have no prior knowledge of the
host, we can only include the IP address in the mandatory HTTP Host header (a
shortcoming as we will see for measuring CDN). Many (virtualized) servers will reply
with a 301 Moved Permanently error, and thus, we can extract a valid uniform
resource identifier (URI) from the Location header in the error response. In these
cases, the extracted URI will redirect us to a valid page. We can further provide a
valid Host header if the URI includes the host’s common name. This information
enables us to issue another request that hopefully results in a larger response. So,
we send an RST to quickly end the connection and issue another request on a new
connection following the redirect.

If the redirect fails, we increase the response size by bloating possible error pages.
This approach is motivated by an initial observation that a substantial number of
servers replies with 404 Not Found pages that include the URI that they could not
find. Thus, enlarging the request URI will enlarge the error response. Hence, we
request a long URI indicating the nature of the scan, anticipating a long enough
response. We choose the URI to fill up the maximum transmission unit (MTU)
of our connection, thus transmitting more bytes than we announced we would be
capable of in the MSS.

In addition to acknowledging segments to look for more data, we additionally infer if
the IW was actually exhausted by exploiting HTTP characteristics. Concretely, we
request that the remote-end closes the connection upon finishing the transmission
by including the Connection: close HTTP header. This semantic should lead to a
TCP FIN once the remote-end has transmitted all data. However, if the remote end
has still data after it filled the IW, it cannot send the FIN as it still has data in its
transmit queue. By receiving the FIN, we infer that the IW was not reached (in the
absence of packet loss).

3.1.3.2 TLS-based IW Inference

Rising security and privacy concerns contributed to an increased usage of HTTP
Secure (HTTPS) (the TLS tunneled version of HTTP) [NFL+14]. After port scans
of the default HTTPS TCP port 443, we were able to exchange data with ≈ 42.6M
hosts successfully. This share is further expected to grow. Not only traditional
services (e.g., banking or e-commerce) are using TLS also Internet giants such as



3.1. Small Change, Big Effect – TCP’s Initial Congestion Window 59

Figure 3.5 CCDF of certificate chain length of 36.5M hosts from censys.io data. TCP payload
sizes covered with several IWs using MSS of 64 and a typical MSS of 1336B1.

Facebook or Google have started to secure all of their traffic, further motivating
others to switch. This trend is also manifested in HTTP/2 [RFC7540] — even though
not mandated by the standard, practically all current implementations enforce TLS.
Given this increasing relevance, we next detail a TLS-based inference method.

This IW inference utilizes the TLS handshake in which the server sends a large
response. In TLS, the handshake is initiated with a client hello, indicating, e.g.,
cipher suites or extensions. Upon reception, the server replies with a server hello
choosing a cipher and depending on that, keying material. Most importantly, the
server continues to transmit its certificate chain that is required to validate its trust.
Certificates typically dominate the server’s answer in the number of bytes.

We analyzed TLS handshakes using the data provided at censys.io. Figure 3.5 shows
the complementary cumulative distribution function (CCDF) of the server certificate
chain length of 36.5M hosts. On average, the certificate chain length was 2186B
(with a minimum of 36B and a maximum of 65 kB). For our scan to succeed, the
remote host needs to send us at least IW×MSS bytes. Assuming an MSS of 64B
and IW10, we only need 640B of certificates which are supplied by more than 86%
of the hosts. We can still reach 50% of the hosts even if they would use IW34. These
calculations neglect the actual size of the server hello and possible extensions that
follow, yielding even more payload to rely on.

To scan a host, we initiate the TLS handshake after completing the TCP handshake.
Since completing the TLS handshake relies on the offered cipher suites by the client,
we compiled a list of 40 TLS ciphers announced by Safari, Firefox, and Chrome and
enriched the list with ciphers that we extracted from the censys.io data that were not
already announced by the three browsers. To generate even more data, we included
extensions for requesting OCSP stapling.

We rely on our acknowledging method to determine if the reply filled the IW or
not. In contrast to HTTP, we could have inspected the TLS length fields and use
these to determine if we can still expect more data to be available. However, looking



60 3. Deployable Transport Optimizations

Scan Reachable Success Few Data Error
HTTP 48.3M 50.8% 47.6% 1.6%
TLS 42.6M 85.6% 13.3% 1.1%

Table 3.1 Scan data set overview (rounded) scanned with MSS 64. Reachable meaning data
exchange is possible.

into payloads requires that we have no packet loss and it further complicates the
implementation, and we found no advantage in doing so.

Implementation Challenges

ZMap is designed for a single packet exchange with the target to probe for open ports.
Since this optimized port scan design is not capable of exchanging multiple packets
with the target (as needed for valid TCP connections), we added this functionality in
a lightweight fashion. We added a probe module to establish TCP connections and
keep track of various per-connection properties such as the length of each segment
and connection state. This design still allows us to perform fast scans, e.g., at a
moderate scan rate of only 150k packets/s, our HTTP-based IW scan only needs
7.5 h to probe the entire IPv4 address space. An unmodified ZMap scanner performs
a port scan at the same rate in only 6.8 h — recall that the unmodified scanner
performs only a single packet exchange with the host, instead of full TCP connections
with subsequent exchanges. This small difference highlights the efficiency of our scan
method.

3.1.3.3 Results: IW Distributions in IPv4

Scan Setup. To evaluate the IW distribution on the Internet, we operate a scanner
within our University’s network. This operation is carefully coordinated with the
University’s IT Center to react to abuse e-mails adequately and to have unfiltered
access to the Internet (e.g., without transparent Web proxies). We followed the
guidelines in [DWH13] (see Section 2.2.1) and set up reverse Domain Name System
(rDNS) entries and a Web page explaining the nature of the scans together with
an opt-out mechanism. To this end, we do not scan unroutable or blacklisted IP
addresses.

Dataset. We present results based on two scans performed in the second and third
week of August 2017, which we summarize in Table 3.1. We declare a success, if
we can estimate the IW, we mark a scan as few data, if we cannot be sure that the
reply exhausted the IW, error marks all other cases (e.g., connection reset). For
our measurements, we decided to probe each host three times to account for tail
loss and count it successful if at least two out of three probes yield the same result

1We implemented a ZMap-based Internet Control Messaging Protocol (ICMP) path discovery
following [RFC1191] estimating typical MSS values, highlighting the IW requirements of TLS. We
found 99% (80%) of all hosts support an MSS of 1336B (1436B).



3.1. Small Change, Big Effect – TCP’s Initial Congestion Window 61

1 2 3 4 5 6 9 10 11 20 25 30 48 64
Initial Window Size

0

10

20

30

40

50

60

Fr
ac
tio

n
of

IP
s[

%
]

HTTP

TLS HTTP

TLS HTTP

TLS

HTTP1%
HTTP30%
HTTP100%
TLS 50%
TLS 10%

HTTP10%
HTTP50%
TLS 100%
TLS 30%
TLS 1%

Figure 3.6 IW distribution in IPv4 of HTTP and TLS for IWs used by at least 0.1% of the
hosts, probed with an MSS = 64B.

and as tail loss may occur, we require them to be the maximum of all three probes.
To further test if hosts adjust their IW based on the announced MSS (recall that
the standard also defines a byte limit), i.e., to always transmit a certain number of
bytes in contrast to segments, we scan with an MSS of 64B and 128B. To ensure no
temporal changes at the host, we send all six probes (three for each MSS) after each
other.
HTTP Scan Ethics. Our HTTP probing methodology is arguably more intrusive
than TLS-based probing. The reason is that HTTP probing is requesting actual
Web (error) pages and thus generates entries in server access logs. These entries
triggered a significantly higher number of abuse e-mail than our TLS-based probing.
As we will discuss in Section 3.1.3.4, the Internet-wide probing footprint can be
drastically reduced by only probing a random sample of IP addresses to get stable
IW distributions: currently, probing 1% of IPv4 suffices.
Success Rates. In total, we successfully probed 60.9M distinct IP addresses, of
which 7M offered both services. Table 3.1 shows that TLS yields higher success rates
than HTTP. HTTP probing of unknown hosts mainly suffers from not generating
sufficient response data for IW inference. We tried to mitigate this by expanding error
pages with long URLs, yet we found that, e.g., during our scans Akamai changed their
default error page to not include the URL anymore highlighting the impact of our
scans in server access logs. In contrast to HTTP, TLS returns more data (e.g., due to
certificates) and is less intrusive. Still, around 13% of hosts return insufficient data.
We attribute this to missing server name indication (SNI) (i.e., similar to HTTP’s
host-header a TLS extension that signifies the hostname) information since servers
close connections when the request does not contain a (forward) Domain Name
System (DNS) name, which are unavailable when only enumerating IP addresses.

3.1.3.4 Overall IW Distribution

We start by exploring the overall distribution of IW sizes for both HTTP and TLS
and report results based on successful IW estimations (see Table 3.1) with an MSS of



62 3. Deployable Transport Optimizations

Scan NoData IW1 IW2 IW3 IW4 IW5 IW6 IW7 IW8 IW9 IW10
HTTP 4.8% 16.5% 7.1% 7.2% 2.9% 3.6% 2.0% 45.0% 2.7% 1.1% 0.9%
TLS 17.8% 56.3% 5.6% 0.7% 1.9% 2.8% 2.4% 2.4% 3.4% 0.4% 0.8%

Table 3.2 Lower bounds of IWs for hosts that did not send enough data.

64B. Figure 3.6 shows dominant IWs, i.e., observed at more than 0.1% of the hosts.
We see that IWs of one, two, four, and ten segments dominate the scan. These IWs
are present at more than 97% of all scanned HTTP or TLS hosts. This finding is in
line with recommendations in various RFCs. Out of 7M IP addresses that appear for
both HTTP and TLS, 6.2M agree in their IW estimate, and 858k IP addresses yield
different IW estimates for HTTP and TLS. Interestingly, we find that the TLS scan
and the HTTP scan differ in the distribution of IW4 and IW10: we find more TLS
hosts with IW4. In contrast to the measurement by Medina et al. [MAF05] from
2005, we observe that IWs of four and ten segments have gained the highest relative
growth. When analyzing non-standard IWs, we observe two peaks, one at 25 (TLS)
and one at 64 segments (HTTP). However, the low overall deployment of IW10,
especially on TLS-enabled host, is notable, given its standardization in [RFC6928]
already in 2013 and its implementation, released in the Linux kernel 2.6.39 from May
2011, is even older.

Lower IW Bound for Hosts with Insufficient Data

As indicated by our success rate, we are roughly missing half of the HTTP (and 13.3%
TLS) hosts by not having enough data available for IW probing (see “Few Data”
in Table 3.1). To better understand these hosts, Table 3.2 shows their minimum
supported IW, i.e., before they run out of data. The picture is different for HTTP
and TLS. For HTTP, we find that 45.0% of probed hosts run out of data after having
transmitted data worth of an IW of seven segments. Given the current standards,
these hosts are likely actually configured to use an IW of ten segments. For TLS,
17.8% do not send any data (i.e., 4× more than for HTTP) and 56.3% run out
of data after a single segment. This gap is likely caused by hosts not supporting
our cipher suits or TLS versions offered by our probing module. Here, we are not
receiving any certificates but only TLS error messages. In these cases, we cannot
make speculations on possible IW configurations.

Scanning 1% is Enough!

During our scans, we have observed a significant number of abuse e-mails that are
triggered by our scans, both automatic as well as manually created requests to us. To
lower the footprint of our scans and to overcome one of our research challenges, we
next investigate if we can reduce the footprint of our Internet-wide scans by limiting
IW probing to a smaller subset of hosts. We thus extracted a random subset of
50%, 30% and 1% of all successfully probed IP addresses for both the HTTP and
the TLS scan and show their IW distributions in Figure 3.6. For the 1% sample,



3.1. Small Change, Big Effect – TCP’s Initial Congestion Window 63

01.
Jun

201
7

01.
Jul

201
7

01.
Au
g 2
017

01.
Sep

201
7

01.
Oc
t 2
017

01.
No
v 2
017

01.
De
c 2
017

01.
Jan

201
8

01.
Feb

201
8

01.
Ma
r 2
018

01.
Ap
r 2
018

01.
Ma
y 2
018

01.
Jun

201
8

01.
Jul

201
8

01.
Au
g 2
018

01.
Sep

201
8

01.
Oc
t 2
018

01.
No
v 2
018

01.
De
c 2
018

01.
Jan

201
9

01.
Feb

201
9

01.
Ma
r 2
019

01.
Ap
r 2
019

01.
Ma
y 2
019

01.
Jun

201
9

01.
Jul

201
9

01.
Au
g 2
019

Date

0

20

40

60

80

100

Sh
ar
e
[%

]
IW 1
IW 2

IW 4
IW 10

HTTP TLS

Figure 3.7 Evolution of IETF-recommended TCP IWs in IPv4 since June 2017 for HTTP
(circles) and TLS (triangles) established through periodic 1% random samples.

we additionally show the mean of 30 random subsamples and the 99%-quantile in
red (small and hardly visible in the figure). We observe a stable distribution for
any sample size, indicating that only probing 1% of IPv4 already yields a stable
distribution — even for IWs only present at 0.1% of the hosts. Since the first sample
requires knowing the set of all IP addresses reachable for HTTP/TLS services, we
further took 30 random 1% samples of the entire probable address space and arrived
at the same result. While probing the entire IPv4 space is possible, it is (given
current host configurations) not required to obtain representative IW estimates;
reducing the overall footprint by only probing a random subset of 1% suffices.

Given our findings, we have been probing IPv4 weekly for over three years at
random 1% samples for HTTP and TLS11. Figure 3.7 shows the evolution of IETF-
recommended values. Throughout our observations, we see a steady increase in IW10
for both HTTP and TLS. For TLS, we observe that the share of IW10 starts to
dominate that of IW4 in the first quarter of 2018. We suspect that operating system
updates mainly drive the increase as current versions of Linux and Windows default
to IW10.

Impact of Legacy Systems on Results

Since the overall distribution is likely to be impacted by (older) legacy systems, we
next focus on assessing popular Internet infrastructures by scanning the Alexa Top
1M list. We show the IW distribution for the Alexa Top 1M list in Figure 3.8 (note the
log-scale). In contrast to probing the entire IPv4 space, the success rate at popular
hosts for HTTP increases to 80%, yet, TLS only gains marginally and succeeds at
85% of the hosts. We can now see that IW10, as the currently recommended value,
dominates the scans with a support of over 85% (80%) for HTTP (TLS). Still, some
hosts are on IW2 and IW4. The IW distribution of TLS hosts is irrespective of
their Alexa rank, and only IW10 is more pronounced for higher-ranked HTTP hosts.
We believe that in contrast to the entire IPv4 space, hosts of popular domains are

11Up to date data is provided at https://iw.netray.io

https://iw.netray.io


64 3. Deployable Transport Optimizations

1 2 3 4 5 6 9 10 11 14 16 24 48
Initial Window Size

101

102

103

104

105

106

#
IP
s

7% 7%

85%

8%
11%

80% HTTP
TLS

Figure 3.8 Alexa 1M IW distribution of HTTP and TLS scan for IWs used by at least 100
hosts.

interested in performance optimizations or at least keep their systems up to date.
Before we dig deeper into understanding these differences, we next discuss how hosts
define their IW by looking at the differences when scanning with a larger MSS before
we analyze the data on a per-autonomous system (AS)/service basis.

3.1.3.5 IW Defined by Byte Limit

Until now, we have only shown the results for our scan with an MSS of 64B. We
found that only a limited number (around 1%) of the scanned hosts adjusts their IW
according to the announced MSS (when comparing with the results of the 128B MSS
scan). Roughly 50% of these hosts send 64 segments, and when doubling the MSS
to 128B, the segment number halves to 32. These findings suggest that these hosts
are configured to use 4 kB as their IW, i.e., the product of the MSS and number of
segments. We randomly sampled the hosts and manually investigated them to see
if we can characterize the hosts. Eight out of ten hosts present a login interface to
what seems to be residential access modems from Technicolor in different versions,
and the Mexican Internet service provider (ISP) Telmex seems to host most of these
modems. Among the others, we found publicly accessible power supply monitors
that show the same behavior. We could not cluster the remaining 50% of the hosts
into larger groups as above. One group that we found by randomly sampling are
hosts that seem to adjust their IW in a way that they fill the network’s MTU, i.e.,
with an MSS of 64B they send 24 segments, and on 128B, they send 12, summing
up to 1536B.

3.1.3.6 IW Distribution by Network & Service

We now analyze the IW usage by network type represented through ASes. Ac-
cordingly, we cluster our data by AS number (ASN) with similar IW distributions
using DBSCAN (w.r.t. IW1, IW2, IW4, IW10, and other). The lefthand side of
Figure 3.9 shows unusually large clusters with similar IW distributions that represent



3.1. Small Change, Big Effect – TCP’s Initial Congestion Window 65

105
68 180

8
326

1
255

5
921

3
311

5

Am
azo
n

Co
mc
ast

Go
Da
ddy

Na
t.
Int
. B
ack
bo
ne

Clo
udfl

are

Vo
daf
on
IT
Ak
am
ai

Ko
rea

Te
l.

0.0

0.5

1.0

Sh
ar
e

IW 1
IW 2

IW 4
IW 10

HTTP
TLS

Cluster Size

Figure 3.9 Distribution of IWs per AS. Left, 3 HTTP and 3 TLS clusters of ASes standing
out. Right, representatives of these clusters or ASes that do not fit into the clusters.

a considerable fraction of all scanned IP addresses (HTTP 49%, TLS 48%). These
clusters give intuition on per-service IW deployments. Clusters (HTTP and TLS)
with nearly exclusive use of IW10 mostly compromise content provider (CP), e.g.,
hosters, cloud provider, and CDNs. ASes with many IW2-based hosts belong to
ISPs or in case of HTTP also to universities. The cluster for IW4 is a mixture
between ISPs and hosters. While the HTTP measurement shows more ISPs than
hosters, the TLS measurement stands out with an AS from Akamai that use IW4.
In case of GoDaddy, 19.8% (32.7%) of the 137 k HTTP (193 k TLS) hosts that were
announced by AS26496 (704 prefixes) use an IW of 48 segments. We remark that
the number of GoDaddy hosts is � 1%, which is why this IW peak is not clearly
visible in Figure 3.6. Unlike our previous observed 4 kB IW hosts, these hosts use
a static configuration of IW48, irrespective of the announced MSS. We found no
apparent reason for this comparably large IW.

We find an assorted map of different IW configurations. To compare selected content
and (residential) access networks, we show their IW distribution in Table 3.3. We
classify content networks with the help of service-provider IP address ranges (e.g.,
[Ama19]) or the GHost HTTP server string in case of Akamai. Access networks are
classified based on their rDNS record [SGS+17]: i) we extract hosts which encode
their IP address in the rDNS record, i.e., 38.6% (62.5%) of all HTTP (TLS) IP
addresses. To exclude server networks (e.g., Amazon and Akamai) we further match
their rDNS record against a manually created ISP domain list and a keyword list
(e.g., “customer”, “dialin”). This way, we classify 16% (18.1%) of all HTTP (TLS)
IP addresses as access. While it seems that CPs have widely adopted IW10, we still
observe older IW configurations for networks with a potentially high share of legacy
devices (e.g., home routers in access networks).

Besides differences between network types, content networks enable further per-
service or even per-customer IW configuration (e.g., by Akamai [Aka15]). However,
enumerating IP addresses is just not enough to grasp such service-dependent con-
figurations as CDNs typically use the DNS name for exact content routing (see



66 3. Deployable Transport Optimizations

HTTP TLS
Service IW1 IW2 IW4 IW10 IW1 IW2 IW4 IW10
Akamai – – – – 0.0 0.0 100.0 0.0

EC2 0.0 1.8 3.4 94.7 0.2 1.3 2.6 95.8
Cloudflare 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0

Azure 0.0 7.8 54.9 37.1 0.1 4.1 73.3 21.9
Access NW 3.5 50.2 20.8 21.7 4.5 17.6 67.1 10.4

Table 3.3 Per-service IW distribution [%] clustered by IP address range (servers) or rDNS
(access). Dominant IWs highlighted.

Section 2.1.2). This finding motivates an in-depth analysis of CPs, which is our next
focus.

3.1.3.7 Measuring CDN IWs

To dissect the usage of IWs at CDNs, we must alter our scan setup. To this end,
we structure our measurement study into three phases. At first, we gather lists of
target URLs that are served by CDNs. In a second phase, we derive the IWs of the
hosts serving the URLs. At last, we use virtual private networks (VPNs) to derive
the IWs from different networks for a subset of these URLs.

Target Addresses

The first phase is relatively straightforward. Here, we utilize data published by
the HTTPArchive [SGM+19]. The HTTPArchive crawls websites while recording
diverse information about the websites. For their bi-monthly crawls, they visit all
websites included in the Alexa Top 1M list. We utilize the crawl data from the 15th
of January 2018 and extract all URLs that the browser loads during the crawl, i.e.,
the landing page URLs as well as subsequently requested objects such as images
or JavaScripts. Even though the HTTPArchive already marks CDNs in their data,
we repeat this step as the CDN choice could be geo-location dependent or utilize
a MetaCDN (see Section 4.2) and as the HTTPArchive data can be up to half a
month old, the CDN operator could have changed in the meantime. To do so, we
apply the domain list [Goo18] published by the WebPagetest [AG18] framework (the
framework driving the HTTPArchive), which enables to classify a URL by resolving
its domain using DNS. Many CDNs utilize the DNS to redirect (using canonical
name (CNAME) records) a user to the CDN server (see Section 2.1.2 for a detailed
description). Thus a CDN can be identified by its CNAME pattern in the DNS
resolution step, and for those which do not use CNAMEs, we utilize IP address lists
published by the CPs, e.g., for Cloudflare. The result is a rather extensive list of
URLs which we filter to include only URLs hosted at CDNs and only one URL per
domain. For each domain, we choose the URL with the largest object size. This
filtering results in a list of ≈ 227k URLs (available at [Rüt18c]) hosted on 69 CDNs



3.1. Small Change, Big Effect – TCP’s Initial Congestion Window 67

Figure 3.10 Overview of our scanning architecture. We leverage Linux network namespaces to
scan concurrently and to easily manage multiple VPN connections.

used to establish IWs. We remove 116K objects (25 CDNs) that are too small to
reliably estimate an IW (for large segment sizes, see Section 3.1.4.1) from the results.

Scanning Architecture

We use our go-lang-based scanner embedded in the architecture depicted in Figure 3.10
to structure and perform our scans. To enable concurrent scanning at multiple vantage
points, we make use of OpenVPN and Linux’s network namespaces. A network
namespace can be seen as a shallow copy of the network stack with its own interfaces
and routing tables. As many VPNs apply network address translation (NAT) to
assign IP addresses to their peers, we experienced that different VPNs assigned the
same IP address or the same subnet to us. To overcome this issue, we override
OpenVPN’s device creation and insert a script to manually create network devices
in a new network namespace identified by the VPN’s publicly facing IP address.
This isolation enables to completely disregard any routing or name clash issues when
using multiple VPNs in parallel. We then start one instance of an IW-prober in each
namespace and feed it the URLs.

To not put an enormous burden on the VPNs, we perform a preprocessing step.
Instead of querying all 111k URLs (potentially multiple times to account for tail
losses) through the VPNs, we first derive a list of candidate URLs in our campus
network. We select query candidates by grouping URLs hosted at the same CDN
using the same IW and select a random sample of URLs for each (CDN, IW) pair.

Vantage Points

Gathering globally distributed vantage points that grant packet-level access is hard.
To do so for our measurements, we make use of the VPN Gate [NS14] project by
the University of Tsukuba. This project’s goal is to give access to the Internet
without censorship. To this end, the project manages a list of thousands of relay
VPN servers around the globe. Volunteers operate many of them via their private



68 3. Deployable Transport Optimizations

Internet uplinks. While the site lists many VPNs, we found only a small set of them
to reliably work for our measurements, which might also be due to the implemented
censorship protection announcing false gateway servers. To account for our scan
methodology, we only use VPN connections made through TCP. Thus, loss between
our VPN client and the VPN server is automatically resolved and does not affect
our prober. According to [NS14], most of the VPN servers only have a relatively
small bandwidth capacity mostly below 10Mbit/s. Consequently, to not disturb the
regular VPN operation, we implement a rate shaper into our prober that smooths
burst and limits the outgoing bandwidth. We configure it to transmit at most 100
packets per second, and thus, we limit the prober to ≈1.2Mbit/s for full-sized frames
and much less for smaller frames. Further, through local experiments, we found that
excessively parallelizing IW estimations challenge NATs quickly causing exhausted
NAT tables. Therefore, we limit ourselves to a handful of parallel estimations per
VPN. We chose both, the parallelism and the rate shaper, such that only short
bursts are shaped and no long-standing queues are formed that could impact our
measurements.

3.1.4 Campus Network Perspective on CDN IWs

We next explore CDN IW configurations from the perspective of a well-provisioned
campus network (RWTH Aachen University) (worldwide perspective follows in
Section 3.1.5) to set an upper bound on the expected IW sizes. As our network’s
upstream ISP peers at DE-CIX (where many CDNs peer as well), and our network
offers at least one order of magnitude higher capacity than typical consumer Internet
connections, CDNs could potentially adapt by serving content with higher IWs thus
providing an upper bound on the expected IW sizes.

IW Probe Procedure

As IWs can be configured in bytes or segments, we scan each URL (see Section 3.1.3.7)
with different maximum segment sizes of 64, 128, 536, 1200B (leaving enough space
for the VPN tunnel headers), ten times each. These repetition and different segment
sizes enables to derive if the scanned host changes the total number of bytes delivered
in the IW, i.e., the IW is fixed to a certain number of packets (we refer to the
segments) or if it is fixed to a certain number of bytes (we refer to the bytes). To
account for tail-loss, we perform a majority vote for each segment size and regard a
scan as successful if >50% of the votes agree on the largest observed IW (97% of our
measurements). To derive the final IW, we inspect the number of packets and bytes
received over the four different segment sizes: if the IW depends on the segment size,
we calculate an IW (in bytes) as if we were using maximum-sized segments (1460B).
Otherwise, we directly use the fixed number of bytes. Note that we refrain from
showing quantities in which we observed certain IWs as our choice of URLs could
bias them. Furthermore, we are not able to estimate IWs for all URLs, since their
object size can be too small to fill a larger IW, which would bias the results towards
smaller IWs.



3.1. Small Change, Big Effect – TCP’s Initial Congestion Window 69

Figure 3.11 CDN IWs as seen from our university network. IETF sizes of four (not shown)
and ten segments are present but also larger IWs.

3.1.4.1 IW Sizes

Figure 3.11 shows the resulting IW sizes in bytes and segments assuming 1460B
packets from our local campus network. Each dot represents an IW configuration,
and the adjacent box lists a selection of CDN providers that deliver URLs with this
IW (a CDN can occur in multiple boxes). Even though we find many CDNs offering
URLs via IW10, we also find much larger sizes. This observation is in contrast to our
prior IP address only scans over the IPv4 address space (see Section 3.1.3.3), which
found IETF-recommended IW sizes to dominate most likely due to the number of
deployed legacy systems (e.g., Digital Subscriber Line (DSL) gateways).

Our findings show that CDNs do, in fact, depart from IETF-recommended IW
sizes and customize the IW. For example, we observe IW16 and IW32 for the
probed Akamai URLs12, both larger than the current IETF recommendation of
IW10. However, we also find very large IWs. For example, the largest IW that
we observed is by Fastly. They deliver some URLs using an IW of 100 segments.
Cachefly also shows a larger than usual IW of 105 kB. Notably, Cachefly uses a fixed
IW configured in bytes which leads to many transmitted segments when we scan
using small segment sizes. On the opposite end of the spectrum, we find URLs
hosted on CDNs that deliver data with a smaller IW than currently recommended.
For example, we find URLs hosted on ChinaCache (not shown) that they deliver
with an IW of four segments, yet, we can again observe that ChinaCache customizes
as well, as they also deliver URLs with IW20.

12We remark that each CDN can use additional IW configurations beyond the configurations
discovered in our measurements.



70 3. Deployable Transport Optimizations

Operating System rwnd [B] WS WIN [B] Segs.
Linux 4.4 58 512 29 696 20
Android 6.0 (Linux 3.4) 685 128 87 680 60
Android 7.0 (Linux 3.18) 641 128 82 048 56
iOS 11.2.5 2058 64 131 712 90
Mac OS 10.9.5 8235 16 131 760 90
Mac OS 10.13.2 4117 32 131 744 90
Windows 7 (SP 1) 256 256 65 536 44
Windows 8.1 / 10 1024 256 262 144 179

Table 3.4 TCP rwnd, window scaling (WS), resulting window (WIN) in bytes and full-sized
segments on different operating systems as reported on an HTTP GET request from an
otherwise idling system.

Can Increased IWs be Utilized?

The actual amount of data that the CDNs transport is not only dependent on the
server’s cwnd. The client permanently announces a rwnd, TCP demands that no
more than the minimum of the advertised rwnd and the cwnd is in flight. Table 3.4
shows the client-advertised receive window on an HTTP GET request for a selection
of client operating systems. As the table highlights, the largest IWs that we measured
would not be effective for a couple of operating systems. Linux 4.4 shows the lowest
advertised rwnd, which would not be able to utilize many of our discovered CDN
IWs. We found a git commit [DDM10] documenting this rwnd in response to the
IW10 increase. Interestingly, Android, even though using an older Linux kernel, has
increased the rwnd and would be able to utilize most of the IWs measured. The
same holds for iOS and all other tested MacOS variants. Apart from Windows 7,
all recent Windows variants announce rwnds large enough to not thwart even the
largest observed IW.

Takeaway. We observe CDNs to configure IW sizes beyond IETF-recommended
values, highlighting that i) Internet reality departed from standardization and ii) IW
sizes larger than standardized are of practical relevance. Their actual impact on
network performance, in terms of losses, fairness and flow completion is practically
unexplored by current research, highlighting that Internet reality also departed from
research. We found that CDNs do customize IWs. However, it remains unclear when
a CDN decides to utilize which IW.

3.1.4.2 Are IWs Content-Dependent?

One way to customize IW sizes is by delivery service class (e.g., low latency Web
delivery vs. elastic download), which can explain multiple observed IWs per CDN.
Since we cannot directly identify service classes, we analyze IWs for typical content
types by filtering the HTTPArchive for Akamai-served URLs according to their MIME
type. We focus on Akamai, as one of the largest CDNs for which we already observed
multiple IW sizes. For each domain, we take the largest URL of the following MIME
types: i) application/mp2t (62 URLs) typically employed for video streaming



3.1. Small Change, Big Effect – TCP’s Initial Congestion Window 71

Figure 3.12 IW distribution for Akamai URLs per MIME type.

applications, ii) image/png (1812 URLs) for images, iii) application/javascript
(1395 URLs) for regular Website content, and iv) application/octet-stream (67
URLs) for any binary data (download). We expect that interactive content uses the
larger of the two IWs as, e.g., the play-out of a video should start as fast as possible,
which large IWs would enable.

Figure 3.12 visualizes our analysis. Our expectations are partially met, i.e., streamed
video content (MP2T) is mostly delivered with IW32, yet not exclusively. This fact
and also the other MIME types highlight that the MIME type does not determine the
IW per se. For PNGs, JavaScripts, and binary data, we observe that Akamai serves
the majority via IW16; the quantity of IW32 varies between 30% (JavaScript, binary)
and 40% (PNG). These observations highlight that it is more likely that an IW is
not set depending on the MIME type but is rather dependent on the service class
(product) that the customer has purchased at the CDN. Of course, some products
are designed for interactive delivery and others not, yet, in the end, this non-strict
assignment of IWs to MIME type shows that the customers decide what they deliver
through which product.

Takeaway. Different content types can benefit from different IW sizes, and our
results suggest that content-dependent customizations (e.g., for interactive video
streaming) exist. Still, they cannot be purely detected by MIME type since they more
likely depend on the delivery strategy selected at the CDN.

3.1.5 Worldwide Perspective on CDN IWs

To investigate if CDNs tailor IWs to networks, we probe the same URL from multiple
vantage points. To do so, we utilize the public VPNs listed at VPNGate [NS14]. As
the service lists thousands of VPNs, we concentrate on a small subset of 14 VPNs all
located in different countries and ASes. For these VPNs, we test samples of URLs (5
per IW/CDN combination) for which we have already established an IW from our
previous campus network-based measurements, thus enabling to compare if other
networks are subject to different IW configurations.



72 3. Deployable Transport Optimizations

#VPN ASN AS Name Country Link Type
1 AS1221 Telstra Australia Consumer
2 AS3303 Swisscom Switzerland Consumer
3 AS3326 Datagroup Ukraine ?
4 AS4766 Korea Telecom South Korea ?
5 AS7552 Viettel Vietnam Consumer
6 AS7922 Comcast USA Consumer
7 AS9198 Kaztelecom Kazakhstan Consumer
8 AS12389 Rostelecom Russia Consumer
9 AS16276 OVH France Datacenter
10 AS17534 NSK Japan ?
11 AS24560 Airtel India Consumer
12 AS24620 Riga Tech. Univ. Latvia University
13 AS28548 Cablevisión Mexico Consumer
14 AS28885 OmanTel Oman Consumer

Table 3.5 Classification of VPNs used to estimate CDN IW configurations.

VPNs Akamai Azure Cachefly Cloudf. Edgecast Fastly Highw. Level 3
16 32 30 105 kB 25 30 100 10 64 kB 32

1,9 1 1 1 1 1 1 1 1 1 1
2-6,8 16 32 30 105 kB 25 30 61-62 10 64 kB 32
7 16 32 20-30 105 kB 25 20-30 61-63 10 20-60 kB 32
10 16 32 30 105 kB 25 30 1-100 10 83 kB 32
11 16 32 30 105 kB* 25 15-30 2-61 10 4-49 kB 32
12 16 32 30 105 kB 25 30 87-99 10 64 kB 32
13 16 32 6-30 105 kB 25 2-30 6-73 10 64 kB 32
14 16 32 30 105 kB 25 30 61-75 10 58 kB 32

Table 3.6 IW configurations observed at the VPNs. The top row shows the CDNs with their
IWs as discovered within our campus network. Each field marks the IW we discovered through
the VPN or a range if we saw consistent losses. Results marked with (*) experienced packet
loss but no tail loss.

Table 3.5 gives an overview of the VPN locations (as reported by VPNGate), networks
as well as a manual classification of their link’s nature. We classified the link type
by inspecting i) the AS and ii) the rDNS name of the VPN host and check if it
includes keywords such as cable, (A)DSL, dynamic, or others. Most of our VPNs are
located in residential access networks, except for one in a datacenter (#9), one in a
university network (#12) and three links (#3, #4, #10) that we could not classify
due to missing hints.

Results

Table 3.6 summarizes our IW estimations through these VPNs. We were able to
build classes of VPNs that perform similarly, already indicating that many of our
VPNs show similar performance and we see a similar IW configuration. The first



3.1. Small Change, Big Effect – TCP’s Initial Congestion Window 73

class for VPNs #1 and #9 shows the most significant divergence from our campus
network. Here we measured an IW of only one segment for all CDNs contacted via
both the consumer (#1) and the datacenter (#9) link. Especially for a datacenter
link, this seems too low and does not fit the rest of our data. When more closely
inspecting both VPNs, we found that both VPNs seem to heavily rate-limit the
packet-rate. Even when performing a regular download of the URLs, we are unable
to get more than two segments in a roundtrip at any time. Thus, we believe that the
IW estimation here is unable to determine the actual IW due to the rate-limiting,
which highlights the challenges when using vantage points that are out of direct
control.

The second, largest class, of VPNs, paints a similar picture to that of our local
observations. We observe for all but one CDN provider the same IWs as seen from
our university network. The only difference being Fastly, for which we have measured
IWs between 61-62. Here, we consistently measured IWs in that range, indicating
that our measurements are subject to loss. We take this as an indication that likely,
62 is not the actual IW that should have been delivered but rather a larger IW was
subject to substantial tail loss, especially since all other IWs are configured similarly
to our local observations.

This impression continues when observing the remaining VPNs, there the IWs for
Fastly also reach up to 100 segments (VPNs #10 and #12) but with consistent losses
between multiple measurements. For many, we observe IWs in the range of 60 to
70 segments. We take this as an indication of a service-specific configuration rather
than a network-dependent one.

But we also find patterns of network-dependent configuration, e.g., for the Highwinds
CDN that we measured with an IW of 64 kB locally. For VPNs #10 and #14, we
consistently observe different IWs. For VPN #10, we observe a larger IW of 83 kB
and for #14 only 58 kB. Also for Highwinds, we can observe losses at VPN #7 and
#11.

Especially, VPN #11 observes the highest losses throughout our measurements. Here,
also Cachefly with the second-largest IW (equaling to 72 full-sized segments) that
we observed shows losses (which does not show any losses at other VPN).

Limitations

Even though, we likely see signs of network-driven tailoring behavior, we could be
hitting legacy systems that are just differently configured. Furthermore, since we
use public VPNs, other requests could affect our IW-estimations that were done
over this VPN. However, this would actually strengthen our observations that CDNs
in-fact do tailor.

Takeaway. Overall, we observe that many CDNs use the same IWs regardless of
the network and are successful in delivering it without losses. Interestingly, we find
that Level 3 and Akamai both deliver content without loss using IW32, while others
like Edgecast and Azure experience loss over the same links despite using a smaller
IW of 30.



74 3. Deployable Transport Optimizations

Motivated by these observed losses, we want to investigate the burstiness of IWs. To
this end, a recent proposal [All15] recommends using TCP pacing (see Section 2.3.3.4
for a detailed rationale) to evenly space out packet delivery over the RTT when
exceeding an IW of 10 segments to be less aggressive towards queues. Visweswaraiah
and Heidemann [VH97] have also proposed to use pacing after idle slow start restarts.
Since Linux Kernel 3.11 (released in September 2013), it offers pacing support via a
selectable packet scheduler in the traffic control (TC)-subsystem, starting with Linux
Kernel 4.13 (released in September 2017) also directly from within the TCP stack.
Thus, we continue to inspect the temporal characteristics of the packets transmitted
in the IW to investigate the use of pacing at CDNs.

3.1.6 Burstiness of the CDN IWs

To investigate the use of TCP pacing by CDNs, we again focus on our university
network as we require fine-grained packet arrival times, which are not preserved
through the VPNs.

Traffic Shape of the Linux Pacer

Linux implements pacing (see Section 2.3.3.4 for a general introduction to pacing) in
TCP either via TC as a queuing discipline or directly from within the TCP stack.
For TC, the default queuing discipline must be exchanged to use the TC flow queuing
(FQ) discipline. TCP interacts with FQ by setting an appropriate pacing rate on the
socket that is used by FQ to spread out packets. TCP re-calculates the pacing rate
with every incoming ACK and after the initial handshake as MSS·cwnd

sRT T
·RATIO with

MSS, the cwnd in segments, the smoothed RTT (sRTT), and a RATIO defaulting
either to 200% in slow start or 120% during congestion avoidance.

The ratio is used to accelerate the pacer in different connection phases, and sysctl
parameters allow adjusting it, for both, slow start and congestion avoidance. The
pacing rate defines the amount of data that the stack can send, and the pacer uses
this rate to calculate the departure of the next packet such that the rate is enforced
on the connection. In addition to enforcing a bandwidth, the pacer also allows for a
certain burstiness of the traffic.

This burstiness is enabled by combining the previously discussed rate with a token
bucket scheme. The scheme assigns a credit to each flow that initializes using an
initial quantum. Whenever the algorithm dequeues a packet, it checks if the credit
is zero or below and, in case it is, enqueues the packet again while increasing the
credit by a refill quantum. Thus, new flows, i.e., at the start of the connection, may
directly burst the initial quantum and only then are subject to the rate limiter and
will continue sending bursts of packets governed by the refill quantum (assuming
enough data is available for dequeuing).

Figure 3.13 shows the resulting traffic pattern with the pacer’s default values for
the initial quantum, i.e., 10x MSS, and the refill quantum, i.e., 2x MSS, for a server
serving data at the start of the connection with IW10 and IW20. We used NetEm



3.1. Small Change, Big Effect – TCP’s Initial Congestion Window 75

Figure 3.13 Linux default traffic pattern on the left, pacing using FQ on the right. Each
marker denotes one packet. Packets arriving in the same roundtrip have the same color. Top
row uses IW10, bottom IW20.

to add a delay of 100ms at the egress of the client to simulate an RTT of roughly
100ms in our local network and then measured the packet arrival. As we found
that the packet coalescing of the network interface card (NIC), which reduces the
interrupt-rate, causes imprecise software timestamps of the arriving packets, we
instruct our NIC to perform hardware timestamping at packet arrival.

To illustrate the difference when using pacing, the left side of the figure shows the
typical, bursty behavior without packet pacing. As we can see on the right side, the
default pacer parameters are chosen in a way to allow bursts of 10 packets, thus
allowing an IW of 10 segments (i.e., the IETF-recommended value) to seamlessly
pass through the pacer, while bytes beyond IW10 are subject to pacing as visible in
the lower right plot that uses IW20.

These trains of two packets (refill quantum) correspond to TCP’s self-clocking [Jac88]
behavior when having delayed ACKs that generate an ACK for every second segment
thus causing the release of two packets with every incoming ACK.

Whether or not pacing like this is a good strategy is outside of the scope of this
dissertation, though, we remark that additional research in this area is desirable to
better understand the impact of the initial burst and the microbursts, especially
when regarding features like frame-aggregation in wireless and mobile networks. We
next empirically probe CDNs for this pattern to detect pacing.

Measuring the Packet-Pacing

To measure if the CDNs utilize pacing, we take a look at the packet arrival-times
when executing an IW scan. To do so, we record packet traces (with tcpdump) but
instruct our IW-prober to delay the ACK following the SYN/ACK by roughly 50ms
to emulate a larger RTT to the measured CDN. We again use hardware timestamps
for precise timekeeping.

Similar to Figure 3.13, Figure 3.14 depicts the IW as the received packets (dots)
after connection start for a selected subset of CDNs and URLs. Their arrival time is



76 3. Deployable Transport Optimizations

Figure 3.14 IW burstiness for a subset of the observed CDNs and URLs (each with an RTT of
60ms-70ms). The arrival time of full-sized 1500B packets (dots) in the entire IW is shown on
the x-axis, the IW size (in kB) on the y-axis (e.g., IW10 = 15 kB). Note different axis scalings
due to different IW sizes. Some CDNs seem to utilize packet pacing while others do not.

depicted on the x-axis and the IW size in kB on the y-axis. Please note the different
x- and y-axis scaling due to the different IW sizes. We can visually observe two
different patterns. The first, here presented by Akamai, Highwinds, and Edgecast
(top row), shows close to no temporal distribution of packets. The second, presented
by Cloudfront, Fastly, and Cachefly (bottom row), shows a stream of packets arriving
virtually at the same time followed by a temporally skewed train of other packets.
The latter follows the expected output of Linux’s packet pacer as described before
(Figure 3.13). This behavior is best visible in the example of Cloudfront, where a
burst of ten segments is almost perfectly followed by delayed trains of two packets.
Thus, we can see that some CDNs are likely utilizing pacing during slow start for
IWs larger than IW10 as recommended in [All15].

IW-Skew by Pacing Rate

When looking at the two largest IWs that we observed by Cachefly and Fastly13,
we can see that both pace their IWs, however, we observe that Cachefly is more
aggressive in doing so as they spread their IW over roughly 1.5x the RTT while
Fastly does it over roughly 2.5x the RTT. Compared to smaller IWs like observed at
Cloudfront that pace the IW over roughly 0.5x RTT (i.e., very close to the Linux
pacer’s default), it might not be obvious why spreading the data transmission over
more than an RTT would make sense. We speculate it could be favorable in situations
where the initial RTT sample from the three-way handshake is a poor estimate for
the RTT or when there is congestion on the reverse path. When the initial RTT is
lower than the RTT that the CDN expects during the transmission, e.g., when there
is other traffic filling queues or one must compete for airtime in wireless settings,
it might take more time for ACKs to arrive than the initial RTT sample predicted.

13Please note that while measuring pacing, we experienced heavy tail-loss with Fastly leading to
the reduced bytes.



3.1. Small Change, Big Effect – TCP’s Initial Congestion Window 77

Similarly, when there is loss on the reverse path, ACKs might not arrive rendering
the connection idle, and thus, in both cases prolonging the IW transmission duration
could be favorable.

This kind of pacing challenges the traditional notion of IWs. Typically, the IW
is thought of as the number of bytes sent in the first RTT without requiring an
acknowledgment. Since traditional TCP is bursty, pacing skews this notion as the
data must not necessarily arrive within the same RTT as we already observe for
some CDNs. Thus, e.g., when an IW of 100 segments is paced over two RTTs, the
bytes arriving at the receiver in the first RTT are effectively half of what is received
with a bursty IW100. Therefore, depending on the pacing rate, a paced IW100 might
better compare to a bursty IW50 or even less. Given this observation, discussing
IWs and merely looking at the number of segments is insufficient to reason about
its appropriateness. One should regard IWs concerning time and rate, e.g., an IW
of 100 segments paced over two RTTs with an RTT of 30ms corresponds to a rate
of ∼20Mbit/s which seems reasonable when looking at the capacity of current user
access speeds. While this does not capture the rate on a sub-RTT level, e.g., when
TCP uses no pacing, a data rate better captures the demand of a new connection on
the network than a fixed number of segments.

Takeaway. We find it is likely that some CDNs use pacing. The two largest IWs
show distinct pacing patterns. Past research suggests that pacing can help to bootstrap
new or idle connections. However, there is currently only a limited understanding
of the impact of pacing on networks and of its benefits and drawbacks, especially
as current pacers deviate from perfectly paced packet streams found in simulation
literature. Additionally, pacing challenges the way one should regard IW values; we
find that a data rate better captures the demand on a network.

3.1.7 IW Performance when Competing for Traffic

While we initially investigated the theoretical advantages and disadvantages of using
larger IWs (Section 3.1.1.1), these measurements were idealized. Further, our previous
CDN measurements have shown that some CDNs utilize pacing to distribute the
initial load on the network over a more extended period. We take these observations
and investigate how the parameters affect performance in a more realistic setting,
i.e., when having to compete for bandwidth. Even though we are not the first to
investigate the performance impact of larger IWs, other studies often use simulations
and do not rely on the actual code and configurations that we observed in the wild.
Still, there are many possibilities to investigate this, e.g., how do the parameters
affect a congested peering link or how do they affect performance in a data center. We
opt to investigate the effects from a user’s perspective. Even though it is known that
there are instances of persistent inter-domain congestion [DCG+18], it is still widely
believed that much congestion happens at the network edges and more specifically
at the end-user’s access link [BCL09], i.e., the last mile. We use this setting and
investigate the performance on an emulated link where a new, comparably short
flow must compete against an elephant flow, i.e., a bulk transfer, reflecting a typical
situation at home with a shared access link, i.e., a bulk download competes against



78 3. Deployable Transport Optimizations

Web server 2

Web server 1
Bottleneck

Linux RouterClient Switch

Packet 
Capture

Egress: Token 
Bucket Shaper

Ingress: Delay
Figure 3.15 Testbed topology with the client requesting traffic from the two Web servers.
Bottleneck characteristics are configured on the dedicated bottleneck machine. Packet traces
are captured on the client machine.

Web traffic. We start our evaluation by describing our testbed before continuing
with discussing our results.

3.1.7.1 Testbed and Parameterization

We extend the testbed used in Section 3.1.1.1 by implementing a simple dumbbell
topology, illustrated in Figure 3.15. It allows us to reflect our end-user setting and
enables us to investigate CC adequately [FK03]. For our measurements, the client
machine to the left of the figure requests a high volume elephant flow from Web
server 2. After it has reached the bottleneck’s capacity, the client requests a second,
small volume flow from Web server 1.

We again vary between four different bandwidth and three different delay configura-
tions motivated by Akamai’s report [Aka16]. Even though CDNs, in general, strive
for low RTTs of a couple of 10th of ms, wireless links and areas with suboptimal
CDN coverage may still face higher RTTs. Additionally, we size the bottleneck’s
queue following the bandwidth delay product (BDP) rule of thumb (see Section 2.3.4
for an overview of buffer sizing). Since, we know of no studies that investigate how
router buffers are sized in the Internet, especially at the edge, we use 0.5x BDP, the
BDP itself, and 1.5x the BDP.

We configure the bandwidth and queue size using a token bucket filter with a burst
size of a single frame at our Linux-based bottleneck machine while using a traditional
drop-tail FIFO queue. Even though Internet access links are often asymmetrical, we
disregard this fact as we are not interested in investigating reverse-path congestion
and use the same bandwidth in both directions.

To add delay to our testbed, we modify our bottleneck’s ingress packet processing.
There, we artificially redirect traffic to an intermediate queue disc enabling us to
use NetEm to add delay before we release the packet for forwarding to the actual
egress queue. While care needs to be taken to size the NetEm queue to not cause
artificial packet loss this approach has the advantage that the end-host stacks are
not involved in the delay which is known to harshly interfere with CC when Linux
detects queuing pressure (TCP small queues). To have a symmetric delay, we add
half of the configured delay to each ingress of the bottleneck. We do not configure
any artificial jitter using NetEm as this causes packet reordering, the delay and jitter
are thus only caused by the egress queue.



3.1. Small Change, Big Effect – TCP’s Initial Congestion Window 79

0.2
0.4
0.6

RTT 30ms

0.2

0.4

0.6
RTT 100ms

0.4

0.8

1.2 QLIM
0.5x
BDP

RTT 250ms

0.2
0.4
0.6

AF
CT

[s]

0.25
0.50
0.75

0.4
0.8
1.2 QLIM

1.0x
BDP

10 16 20 32 50 100

0.2
0.4
0.6

10 16 20 32 50 100
Initial Window

0.3
0.6
0.9

10 16 20 32 50 100

0.5

1.0

1.5 QLIM
1.5x
BDP

4Mbit/s
4Mbit/s paced

7Mbit/s
7Mbit/s paced

26Mbit/s
26Mbit/s paced

100Mbit/s
100Mbit/s paced

Figure 3.16 AFCT for a 73 kB CUBIC flow (solid) and a paced CUBIC flow (hatched) when
competing against a CUBIC elephant flow for different RTTs (columns) and different queue
sizes (rows) subject to bottleneck bandwidths (colors) when using different IWs (x-axis), errors
bars denote 95% confidence intervals over 30 measurements.

All our machines are connected via Gigabit Ethernet and use a Linux 4.13 kernel.
Further, we make sure that the initial rwnds are large enough, not limiting the IW
(see Section 3.1.4.1). Additionally, we clear all TCP metrics after each measurement
and make sure that send and receive buffers are sized such that the machines can
fully utilize their Gigabit Ethernet connection.

We capture traffic at the client using tcpdump to compute the AFCT of the short
flow.

3.1.7.2 Increasing CUBIC IWs and Applying Pacing

Our first study investigates the advantages when utilizing increased IWs as observed
in our CDN measurements and the additional implications that come with pacing. To
this end, we investigate how CUBIC (see Section 2.3.3.2 for a description), the Linux
default congestion control algorithm, performs subject to larger IWs and pacing.
Slightly different to our initial investigations, we use 73 kB of data for our short
flow (to have slightly more than 50 frames) and this time our sole focus is on the
FCT. After the elephant flow has started, the client requests the short flow, which
then competes for bandwidth and for which we measure the AFCT. We repeat each
configuration 30 times to be able to investigate the results statistically. Figure 3.16
visualizes our study, each row showing the same measurements subject to different
bottleneck queue sizes, each column for different RTT configurations.



80 3. Deployable Transport Optimizations

Bursty TCP

We first focus on the non-paced performance (i.e., all non-hatched bars), starting
with the 30ms column reflecting a well connected CDN. Our first observation is
best visible at 4Mbit/s. Here we observe that for this low-end bottleneck speed,
increasing the IW results in decreased performance. On average, the FCT increases
with increasing the IW, especially when the queue size is small, yet regardless of the
queue size (rows), the stability decreases as indicated by the increasing confidence
intervals. Thus, while some measurements show increased performance, some show
extremely worse performance indicating the unsuitability of large IW for these
network configurations.

Similarly, no real gains are observable for 7Mbit/s bottlenecks, only starting with
26Mbit/s, especially for larger queue sizes. Things do slightly change when looking
at higher RTTs. At 100ms slight IW increases to 16 or 20 segments still yield
performance increases even for low bandwidths. Nonetheless, we observe that IWs
such as 50 or 100 cause problems at 26Mbit/s and 100Mbit/s indicated by increased
variance, especially visible for short queue sizes. With an RTT of 250ms, our
measurements indicate that for small queues, again sufficient bandwidth is required
to utilize larger IWs while not hurting performance. When increasing the queue size,
performance generally decreases as in all other settings, however, we see much clearer
that the long flow hogs the queues leading to reduced performance even when having
larger bandwidths.

Paced TCP

We next shift our focus to the performance of the paced CUBIC short flow (i.e., all
hatched bars). Looking at 30ms RTT, we find that pacing, in comparison to its
bursty counterpart, enables TCP to utilize an increased IW already for 4Mbit/s
bottlenecks. First, the FCT, on average is generally lower than the bursty variant,
second, at times where the IW starts to worsen the performance in the unpaced
setting, it still improves the performance up to an IW of 32 segments. Until then,
the FCT even compares to the unpaced variant with 7Mbit/s. After that, the
performance again starts to worsen, notably with an IW of 100 segments (recall
we are only transmitting slightly more than 50 frames), the performance notably
worsens in comparison to the IW50 case. We believe this is because TCP uses
the IW of 100 segments to calculate the packet departure times even though much
less is transmitted leading to a smaller inter-packet gap and overall shorter time
frame which seem to put too much pressure on our bottleneck. This observation
carries over to larger bandwidths as well, however, not as drastically visible. For
100Mbit/s, we even see that the performance slightly worsens, this is not without
surprise, the last packet will depart roughly half an RTT later in the paced variant.
This especially makes a difference when there is less congestion. Pacing’s advantages
slightly diminish over larger buffer sizes, yet, in most cases, it is still beneficial.

For larger RTTs of 100ms and 250ms, pacing does not always yield improved
performance. Especially, when having larger queue sizes that absorb bursty traffic
(see 1.0x and 1.5x BDP at 250ms), it seems that the competing elephant flow leaves



3.1. Small Change, Big Effect – TCP’s Initial Congestion Window 81

0.2

0.4

0.6
RTT 30ms

0.4

0.8

1.2
RTT 100ms

0.8

1.6

2.4
QLIM
0.5x
BDP

RTT 250ms

0.2

0.4

0.6

AF
CT

[s]

0.4

0.8

1.2

1

2

3 QLIM
1.0x
BDP

10 16 20 32 50 100

0.2

0.4

0.6

10 16 20 32 50 100
Initial Window

0.5

1.0

1.5

10 16 20 32 50 100

1

2

3 QLIM
1.5x
BDP

4Mbit/s RATIO 200%
4Mbit/s RATIO 40%
7Mbit/s RATIO 200%
7Mbit/s RATIO 40%

26Mbit/s RATIO 200%
26Mbit/s RATIO 40%
100Mbit/s RATIO 200%
100Mbit/s RATIO 40%

Figure 3.17 AFCT for a 73 kB paced CUBIC flow with a slow start RATIO of 200% (solid)
and a paced CUBIC flow with a slow start RATIO of 40% (hatched) when competing against a
CUBIC elephant flow for different RTTs (columns) and different queue sizes (rows) subject
to bottleneck bandwidths (colors) when using different IWs (x-axis), errors bars denote 95%
confidence intervals over 30 measurements.

enough buffer space during collision avoidance that the short flow can pass through
without requiring pacing. This observation is in line with simulation results from
related works that show pacing’s benefits, especially when having small buffers.
Takeaway. Our investigations indicate that pacing enables TCP to utilize larger IWs
when competing against an elephant flow. These advantages are especially apparent
with small buffers and short RTTs while they diminish for larger bandwidths, because
pacing, by its principle, worsens the flow completion time in uncongested settings.

3.1.7.3 Pacing Aggressiveness in Slow Start

In our CDN observations about pacing, we already saw that some CDNs spread their
IW over different fractions of the RTT. By default, as used in the previous section,
Linux’s pacer paces over 0.5 of the RTT by setting the RATIO to 200%. Since we
already observed how larger IWs that are not utilized by application data affect the
pacing performance in the previous section, we want to more thoroughly investigate
how this aggressiveness of the pacer affects the performance. To this end, Figure 3.17
compares our previous paced variant with a RATIO of 200% against one where we
set the RATIO to 40%, i.e., such that the pacer spreads the IW over 2.5x the RTT,
which was the most extended spread observed in our previous measurements. For
the 200% RATIO, we reuse the data from before (now non-hatched part of the plot).
Looking at the first column (30ms RTT), we observe that spreading the IW over a
prolonged time can yield a slight performance increase for low-bandwidth settings



82 3. Deployable Transport Optimizations

even though using large IWs. We believe that the large spread leads to a later exit
of slow start even though using a large IW, ultimately shortening the FCT for this
low bandwidth setting. When we look at larger bandwidths, we can see that the
decreased pacing rate hurts performance, especially for small IWs. Interestingly, the
reduced pacing rate is beneficial when the IW is larger than the application data
(IW 100 in this case). However, we think it is not the correct measure to reduce the
aggressiveness of too large IWs when there is few application data. Preferably, the
pacer should be informed about application data limitations and use the available
amount of data as the IW if it is smaller than a preconfigured IW.

Focusing on the larger RTTs, we can observe that in nearly all tested settings, the
prolonged transmissions cause significant increases in the FCT. Only for IWs of 50
or 100 segments, the prolonged transmission time seems to nearly amortize. Thus,
the ideal configuration of the pacer seems to dependent profoundly on the concrete
application and scenario.

Takeaway. We tested a very extreme acceleration change of 200% down to 40%.
Although a smaller RATIO, hence longer duration, seems to be beneficial in some
situations, it is disadvantageous in most of the investigated settings. Nevertheless,
accelerating or decelerating the pacer in different settings or throughout the connection
seems to be an area worthwhile to further explore, a property inherent to the BBR
CC.

3.1.7.4 Increased IWs with BBR Congestion Control

For our final investigation of IW performance, we switch the CC algorithm. Now, we
utilize the recent BBR algorithm (see Section 2.3.3.3 for an overview of BBR) that
is known to be used by Cloudflare and Google. Its design builds around the idea of
pacing, however, compared to our paced CUBIC that we tested before, we cannot
adjust the pacing rate in slow start which is called startup in BBR, see [Goo19c] for
an in-depth analysis of the BBR startup parameterization. We remark that compared
to paced CUBIC, BBR chooses the pacing rate and calculates the congestion window,
such that it doubles with every RTT even though not all packets have arrived yet
(due to the pacing), effectively leading to a slightly different packet release mode
than paced CUBIC.

Despite these small differences, BBR is still very similar to paced CUBIC (in slow
start), which is why we compare our default paced CUBIC variant (200% RATIO)
to BBR in Figure 3.18. BBR overall compares well to our paced CUBIC variant,
yet, there are subtle differences. Looking at an RTT of 30ms, we see that for
many parameterizations BBR’s average in our experiments is below that of paced
CUBIC. However, as indicated by the mostly overlapping confidence intervals, this
is not necessarily statistically significant. IW100 stands out; it seems that for lower
bandwidths, BBR scales better to the actual application demand (remember we are
only sending slightly more than 50 frames). For an RTT of 100ms, paced CUBIC
and BBR perform very similar. Looking at 250ms, we find many instances where
BBR’s FCT is higher, especially when looking at the larger buffer sizes. It seems that



3.1. Small Change, Big Effect – TCP’s Initial Congestion Window 83

0.2

0.4

0.6

RTT 30ms

0.2

0.4

0.6
RTT 100ms

0.4

0.8

1.2 QLIM
0.5x
BDP

RTT 250ms

0.2

0.4

0.6

AF
CT

[s]

0.25

0.50

0.75

0.4

0.8

1.2 QLIM
1.0x
BDP

10 16 20 32 50 100

0.2

0.4

0.6

10 16 20 32 50 100
Initial Window

0.3

0.6

0.9

10 16 20 32 50 100

0.5

1.0

1.5 QLIM
1.5x
BDP

4Mbit/s paced CUBIC
4Mbit/s BBR
7Mbit/s paced CUBIC
7Mbit/s BBR

26Mbit/s paced CUBIC
26Mbit/s BBR
100Mbit/s paced CUBIC
100Mbit/s BBR

Figure 3.18 AFCT for a 73 kB paced CUBIC flow with a slow start RATIO of 200% (solid)
and a BBR flow (hatched) when competing against a CUBIC elephant flow for different RTTs
(columns) and different queue sizes (rows) subject to bottleneck bandwidths (colors) when
using different IWs (x-axis), errors bars denote 95% confidence intervals over 30 measurements.

the delay brought in by the CUBIC elephant flow seems to inflate the BBR-observed
RTT further, causing it to reduce its sending rate.

Takeaway. BBR’s startup compares to our paced CUBIC variant. BBR seems to
have slight advantages at lower bandwidths and especially if the cwnd exceeds the
actual application demand. For large RTTs with larger buffers, it seems that our
paced CUBIC variant has advantages when the IW increases.

3.1.8 Summary and Discussion

This contribution’s goal is a better understanding of the current configuration and
evolution of TCP’s IW and how Internet giants push and challenge conventional
wisdom. The IW is a long-debated performance parameter. Its size is in principle
network- and application-dependent, where too small IWs can add unnecessary
latency and too large IWs can cause congestion and thus loss. Nevertheless, the
IW is regarded as a static parameter that fits all networks and applications. Its
IETF-recommended size has only changed infrequently in its history.

To this end, we utilize longitudinal IP address-based scans of IPv4 and the Alexa
list to study the adoption of IETF-recommended IW values and find that IW10, as
the current recommended value, gains more and more track. We have shown that
we can reduce the impact of our world-wide scans drastically when only scanning a
random 1% sample, which allowed us to monitor the IW evolution over more than
two years. Further, we modify our scanner architecture to measure how Internet



84 3. Deployable Transport Optimizations

giants utilize IWs. To this end, we take a look at CDNs as major CPs from our
University network and globally distributed vantage points. We find that CDNs are
well ahead of current IETF-standardized practices by using custom IW configurations.
In our measurement study, we observe IW configurations that are up to ten times
higher than the most recent experimental standard. Our results suggest that CDNs
do customize IWs for different services or customers, yet while advantageous for
some content types, the content type does not enforce the IW. On a larger scale,
we survey if CDNs adjust IWs depending on the end-user’s network. We find some
CDNs for which we can show that IWs vary depending on the network, but not
for all. Driven by losses in our measurements, we analyze the burstiness of the IW
delivery and find that some CDNs utilize pacing to space out packets over time. We
find that the largest IWs in our study utilize this feature, which especially challenges
the notion of IWs as they must not arrive within the first RTT, making it tough to
compare IWs just by the number of segments. We find it reasonable to couple an
IW to a data rate, i.e., over which time is this IW transmitted, to better understand
the IW’s demand on the network.

Since our measurements do not show if pacing actually enables these large IWs,
we carry our real-world observations to a controlled lab evaluation and investigate
their impact on FCTs when competing against a long-lived flow. Our testbed study
indicates that pacing is a curcial component to enable larger IWs, yet, it still shows
that blindly increasing the IW without regarding the actual network and application
results in decreased performance.

While our study focuses on TCP, QUIC borrows TCP’s CC and startup phase,
including IWs highlighting its future relevance (also in light TCP-BPF [Bra17]).
We have thereby shown that standardization and academia have disconnected from
current global trends and especially Internet giants such as CDN depart from current
knowledge and IETF-recommendations. Still, while departing from standardized
practice, it seems that many Internet giants are well-aware of the repercussions that
come with tuning TCP parameters. Our next contribution highlights how Internet
giants push forward QUIC as a new transport for the Internet that overcomes the
ossification of TCP, enabling end-to-end modifications of the transport and not only
sender-side changes.



3.2. Deploying a New Internet Transport – QUIC 85

3.2 Deploying a New Internet Transport – QUIC

Recent years have fostered the understanding that TCP as the de-facto default
Internet transport protocol has become a technological bottleneck that is hard to
evolve (see Section 2.1). This understanding is rooted in the fact that optimizing
throughput is no longer a key concern in the Internet, but optimizing latency and
providing encryption at the transport has become a major concern. The focus on
latency results from shifted demands (e.g., by interactive Web applications) and is
currently proposed to be addressed in part by TCP extensions at the protocol level,
e.g., TCP Fast Open [RCC+11] or Multipath TCP [RPB+12]. While optimizing
latency, there is an additional demand to also provide an encrypted transport,
typically realized by TLS on top of TCP. Since this additional encryption adds
additional latency, further optimizations address this latency inflation, e.g., 0-RTT in
the TLS 1.3 standard [RFC8446]. While these approaches present clear advantages
on paper, middleboxes and legacy systems currently challenge their deployment.

Google’s QUIC14 protocol [LRW+17] aims to address these shortcomings in a new
way (see Section 2.3.2 for an in-depth description of QUIC). Like TCP, it provides a
connection-oriented, reliable, and in-order byte stream. Unlike TCP, it enables stream
multiplexing over a single connection while optimizing for latency. By fully encrypting
already at the transport layer, QUIC provides security and excludes (interfering)
middlebox optimizations; thereby paving the way for a rapidly evolving transport
layer. By implementing QUIC in user space on top of the User Datagram Protocol
(UDP), its ability to rapidly update and customize a transport per application has
yet unknown consequences and motives measurements. It was first introduced to
Chromium in 2012 and has undergone rapid development and high update-rate
since then — as we will partly show in our measurements. Since 2016, the IETF
QUIC working group [IET17b] is working on its standardization as IETF QUIC
(iQUIC). Google widely enabled Google QUIC (gQUIC) for all of their services’ users
in January 2017 [Swe16, LRW+17], motivating our study, capturing its first months
of general deployment. Yet, in contrast to TCP and TLS, there is only minimal
tooling support to analyze QUIC and the academic understanding is currently limited
to protocol security [FG14, LJB+15, JSS15] and performance [CDM15, CMT+17,
LRW+17, KJC+17].

While QUIC seems to be a promising candidate to overcome TCP’s deployment
challenges, it does not come without leaving a bitter aftertaste. Network operators,
especially mobile operators, fear a vast deployment of QUIC [IET17a]. For decades
network operation have been relying on the availability of transport headers to
measure the quality of their networks. To this end, TCP sequence numbers and
ACKs are used to derive RTTs, detect loss and reordering, all key performance
indicators (KPIs) for network operators. With QUIC, such information is hidden
from a passive observer through heavy encryption. As we will show, Internet giants
already challenge the operation of networks today. Especially in light of HTTP/3,
the next generation of the application transport for the Web, which specifies QUIC

14Initially an acronym for Quick UDP Internet Connections.



86 3. Deployable Transport Optimizations

as the underlying transport, network operators are challenged when more and more
traffic moves over to QUIC.

In this contribution, we expand on the understanding of QUIC by providing the first
large-scale analysis of the current QUIC deployments and its traffic share, thereby
observing how Internet giants transform the transport layer. Subsequently, we
analyze whether QUIC can actually deliver its promises of a faster transport for
the Web by performing extensive testbed evaluations and user studies. But first,
to assess the QUIC deployment, we have been performing regular probes of the
entire IPv4 space for gQUIC support since August 2016. We further complement
our IP-based scans with an in-depth view of gQUIC in October 2017 where we
additionally probe the complete set of .com/.net/.org domains as well as the Alexa
Top 1M list, i.e., around 46% of the domain name space [Ver17]. In September 2018,
we performed an in-depth study on the fingerprinting potential of gQUIC servers, and
since August 2018, we further started monitoring iQUIC to grasp an understanding
of how standardization affects QUIC’s evolution.

To assess the traffic share that these deployments generate, we analyze traffic traces
from three vantage points: i) 9 months of traffic in 2017 on a transit link to an
ISP (MAWI dataset [MAW18]), ii) several days in 2017 and 2018 at a European
Tier-1 ISP, representing edge (DSL + cellular) and backbone traffic, and iii) one
day in August 2017 at a large European IXP. We complement this analysis and
follow up on traffic shares of the ISP by investigating 13 additional days that, in
total, are spread over one full year to understand how QUIC traffic shares evolve
and thereby provide a neutral source of information for standardization, Internet
giants and network operators.

To analyze whether QUIC can keep its promises of accelerating the Web delivery,
we source from our observations from our previous contributions. We found that
Internet giants are well ahead of IETF-recommended practices, e.g., utilizing large
IWs and pacing. In fact, these observations have also found its way into the de-facto
reference implementation of QUIC, i.e., Google’s QUIC implementation in Chrome.
Further, previous works have neglected these observations and have thus compared a
highly tuned QUIC stack against a TCP stack that is configured for stability and
not for performance. We recognize these shortcomings and compare both protocols
on an eye-level, i.e., we parameterize both protocols in a similar fashion. First, we
regard their performance in an emulated testbed using purely technical metrics, and
subsequently we perform two extensive user studies to shine a light on the QoE for
actual end-users.

With this section, we contribute to the overall understanding of the evolution on the
transport layer as follows:

• We analyze the development and deployment of gQUIC and iQUIC in the IPv4
Internet.

• We present the first comprehensive view on QUIC deployment and traffic
outside of Google’s network from three different vantage points.



3.2. Deploying a New Internet Transport – QUIC 87

• We build and publish tools to enumerate QUIC hosts and to massively grab
and decode QUIC protocol parameters, which we further use to study the
potential to fingerprint server software, provider, or service type.

• We publish all our active measurement data and future scans via [Rüt19].

• We provide the first study that performs an eye-level comparison of TCP+TLS+
HTTP/2 and QUIC. Our study highlights that QUIC can indeed outperform
TCP in a variety of settings but so does a tuned TCP stack.

• Our study is unique in that it is the first to assess the QoE of actual users in two
large-scale user studies, and in combining it with a pure technical evaluation.

• Tuning TCP closes the gap to QUIC and shows that TCP is still very competi-
tive to QUIC.

• We find that users actually do perceive QUIC as the faster protocol in a direct
side-by-side comparison even against tuned TCP stacks.

• However, in isolation, users generally do not prefer one protocol over the other
if the network is sufficiently fast.

• In slow and lossy networks, QUIC’s advanced protocol design seems to enable
a more satisfying loading process for our study participants.

Structure. Before diving into the scans, we first present an overview of related works
and then provide an overview of the different datasets and measurement campaigns
that we gathered and performed in Section 3.2.2. Subsequently, as a foundation for
QUIC host enumeration, Section 3.2.3 introduces the gQUIC handshake. Section 3.2.4
presents our view on QUIC in IPv4, in three large top-level domains (TLDs) and the
potential for fingerprinting servers as well as the tools that drive our measurements.
Section 3.2.5 shows how QUIC reshapes traffic in campus and ISP/IXP networks.
After analyzing the penetration of QUIC in the Internet, Section 3.2.6 analyzed if this
evolution is worth the effort from a performance point-of-view. Finally, Section 3.2.7
concludes this contribution.

3.2.1 Related Work

Even though Google already introduced QUIC in 2012, it has not been the subject of
many studies. There is only limited work on QUIC’s evolution; for the most consid-
erable part, academia has analyzed QUIC for its security measures and performance.
We now give an overview of how QUIC has been studied in these three categories.

QUIC Performance. QUIC performance is subject to a body of studies [BG16,
CDM15, CMT+17, KJC+17, MKM16, YXY17, NdOA+18, SSW+19b], most compare
QUIC against some combination of TCP+TLS+HTTP/1.1 or HTTP/2.

One direction of research [CMT+17, MKM16] measures TCP and QUIC on publicly
hosted websites — usually operated by Google. While this enables comparing the



88 3. Deployable Transport Optimizations

performance against the same target, it lacks insights into the configuration and the
load currently exhibited on the server. To enable controlled experiments, another
direction [BG16, CDM15, KJC+17, NdOA+18] uses self-hosted servers. To the best
of our knowledge, Yu et al. [YXY17] are the only ones that investigate the impact of
packet pacing in QUIC as a tuning option — yet, they do not perform a comparison
to TCP.

While self-hosting offers greater freedom, websites today are composed of a variety
of resources that are often hosted by third parties on different servers. To this
purpose, many studies consider websites with diverse resources but deploy only a
single server [BG16, CDM15, MKM16]. The Mahimahi framework [NSD+15] was
designed to replicate this multi-server nature of current websites into a testbed
enabling studying realistic websites. Nepomuceno et al. [NdOA+18] perform a study
with Mahimahi but find that TCP outperforms QUIC.

Another line of research investigates the performance of QUIC using (visual) Web
performance metrics. Seufert et al. [SSW+19a, SSW+19b] investigate the QoE of
Youtube video streaming by recording application layer metrics such as video quality
or stalls and find no evidence for QoE improvements of QUIC over TCP. Rajiullah
et al. [RLK+19] achieve a similar result by conducting mobile measurements using
the MONROE framework. They evaluate technical metrics such as First Visual
Change (FVC), Last Visual Change (LVC), and the RUM Speed Index (SI). While
they find websites where QUIC has a definite impact, they conclude that overall, it
has a negligible impact.

All of these works utilize gQUIC as shipped with the Chromium browser, which
Google optimized for the Web. Especially the works in controlled environments
use only a TCP as shipped with the Linux defaults. However, as we have seen in
Section 3.1, particularly Internet giants tune their TCP stacks which challenges
the comparison of a highly tuned QUIC against an untuned TCP. To this end, we
perform repeatable eye-level comparisons of TCP and QUIC and are able to show
that tuning TCP similar to QUIC indeed closes the performance gap.

QUIC Security. A first security analysis gQUIC’s key exchange is presented
in [FG14], followed by a later analysis of the complete protocol [LJB+15]. Jager
et al. [JSS15] complement these works by presenting an attack vector in which the
server config can be computed offline to impersonate a server.

QUIC Deployment. We further complement these works by providing the first
broad assessment of QUIC usage in the wild and outside Google’s network. We study
both the QUIC-enabled infrastructures and its traffic shares from three vantage points.
After the publication of our initial study in [RPD+18], Trevisan et al. [TGD+18] also
investigate QUIC traffic shares in an ISP network. Their data partially precedes
ours, but they can also show the increasing traffic shares of QUIC that are similar to
ours and thus validate our measurements. Further, they also document the power of
Internet giants in pushing new Internet transports.

Related but orthogonal to our work, Piraux et al. [PDB18] propose an active test
suite for iQUIC that tests a variety of essential protocol features. In that regard,
they can analyze how publicly announced QUIC endpoints, e.g., adapt to various



3.2. Deploying a New Internet Transport – QUIC 89

protocol versions. Unfortunately, their data ends where our data starts, and thus,
we are unable to investigate how deployed infrastructure evolves in comparison to
openly announced testing endpoints. We are not aware of other works that analyze
QUIC deployments.

3.2.2 Measurement Overview

We start our journey into the evolution of QUIC by investigating its prevalence in
the Internet before we dive into its performance. Throughout our three-year-long
observations of QUIC, we have gathered several datasets that partly overlap. After
slightly more than a year, in October 2017, we performed an in-depth analysis of
the, at the time, current gQUIC deployment.15 Corresponding to this one year of
monitoring, we collected several traffic traces (MAWI, ISP, and IXP) for a day in
August 2017.
After this day, we were able to obtain further traces from the ISP, however not
from the IXP. We have nevertheless continued to monitor the general deployment
of gQUIC and later also iQUIC but lack an additional in-depth analysis from a
later point in time. In general, due to the limited general deployment of QUIC, we,
however, performed one additional gQUIC fingerprinting study in September 2018.
As we will see, few Internet giants mainly drive QUIC, thus, further probing major
parts of the DNS, as we did in our in-depth analysis, puts increased pressure on
the Internet as well as on our measurement infrastructure. We thus refrained from
performing periodic zone-file measurements and concentrated on IPv4-only scans for
gQUIC and iQUIC.
The datasets thus motivate to also split our discussions providing first an in-depth
look of how QUIC evolved in a year and then how it continued to evolve before we
investigate its performance.

3.2.3 An Introduction to gQUIC’s Handshake

While we have discussed iQUIC in general in Section 2.3.2, we lack an understanding
of gQUIC. Both protocols share many features but are vastly different in their wire
image and further differ in details.
In this section, we thus introduce the gQUIC connection establishment phase, which
as we will see shares many concepts with iQUIC. Revisiting the handshake here
allows us to focus on the crucial parts that we utilize in our measurements for host
enumeration and certificate grabbing. Notwithstanding, for a broader discussion of
gQUIC’s features and design choices, we refer to [LRW+17].
One of QUIC’s main features is a fast connection establishment: In the ideal case,
when cached information of a prior connection is available, it does not even take
a single round-trip (0-RTT) to send encrypted application data. In the worst case
(without prior connections as in our measurements), QUIC needs at least three
round-trips (both IETF and Google) as shown in Figure 3.19 and explained next.

15At this time, iQUIC was in an early standardization stage and no deployments were known.



90 3. Deployable Transport Optimizations

(1) CHLO <connection_id, seq_num, vers, …> Version not 
supported

(2) Version Negotiation <Vers1, Vers2,…,VersN>

(3) CHLO <connection_id, seq_num, vers, …>

Choose 
supported 

version

(4) REJ <certificates, SCFG, SCFG_sig, STK, SNO,... >
Enough 

information?
Cache values 

and retry (5) CHLO <…, SCID, AEAD, KEXS, NONC, SNO, PUBS, …>

(6) SHLO <PUBS, CFCW, SCLS, …>enc

Enough 
information!

Client Server

Figure 3.19 A long gQUIC handshake including version negotiation and caching of values.

In gQUIC, Clients initiate a connection using a Client Hello (CHLO)(1) including the
QUIC version it desires to use. In case the server does not support this version, it
may send a version negotiation packet (2) enabling the client to choose from a list of
supported versions for a second try. We will utilize packet (1) to quickly probe for
QUIC-capable hosts16 with only a single packet exchange and analyze their supported
versions provided in (2). Using a supported version, the client may advance in the
handshake by sending another CHLO (3), without prior communication, it does not
possess enough information about the server to establish a valid connection. The
server supplies the necessary information (4), in one or multiple exchanges (i.e.,
QUIC may repeat Step (3) and Step (4) until all required data is available). In these
step(s), the client will be given a signed server config (SCFG) including supported
ciphers, key exchange algorithms and their public values, and among other things
the certificates authenticating the host. We will utilize this information to analyze
the server-provided certificates. With this information, the client can issue another
CHLO (5) including enough information to establish a connection, the client may
even send encrypted data following the CHLO which depicts the optimal case for
a 0-RTT connection establishment. Following the CHLO, the server acknowledges
(6) the successful connection establishment with a Server Hello (SHLO), containing
further key/value-pairs enabling to fully utilize the connection.

3.2.4 Availability: QUIC Server Infrastructure

We start by analyzing the availability of QUIC in the Internet, i.e., how many IP
addresses, domains, and infrastructures support QUIC following our in-depth dataset
from 2017. Continuing, we highlight how QUIC continued to evolve in 2018 and
2019. We start by providing details about how we identify QUIC-capable hosts in
IPv4.

16Please note the iQUIC invariant header in Figure 2.9a which also contains the version in the
first packet and allows similar enumeration.



3.2. Deploying a New Internet Transport – QUIC 91

IP Scan Methodology

To quickly probe the entire IPv4 space for gQUIC and iQUIC-capable hosts, we
extend ZMap [DWH13], which enables to enumerate IPv4 addresses rapidly. To
identify QUIC hosts, we use QUIC’s version negotiation feature (see Section 2.3.2
and Section 3.2.3). As QUIC is build to enable rapid protocol development and
deployment, negotiation of a supported version (i.e., supported by client and server)
is fundamental to its design. That is, the protocol requires announcing a version
identifier in the initial packet sent from the client to the server. In case the version
announced by the client is not supported by the server, it sends a version negotiation
packet. This packet lists all supported versions by the server, enabling the client to
find a shared version that they use in a subsequent handshake.

We leverage this feature and sent a valid handshake message containing a version that
is likely to be unsupported by the other party, i.e., by including a version that is not
reserved and does not follow the current gQUIC pattern. For iQUIC, we do the same
but use a version following the pattern 0x?a?a?a?a (filling ?with random bytes),
these versions are specifically reserved to be never used and thus exercise version
negotiation. To allow a curious observer to identify and reason about our scanning,
we use the connection ID fields in iQUIC to transmit an ASCII text that reads
Visit:quic.netray.io, announcing a website that presents more information on
our scans. For gQUIC, we are limited in size and transmit the word SCANNING as the
connection ID again hinting at our intentions. Regardless of QUIC-flavor, in response
to our initial packet, the server will not be able to continue the handshake as both
versions do not match, and thus, it will send a version negotiation packet containing
a list of its supported versions. Using an invalid version or reserved version has the
advantage that we enumerate not only valid QUIC hosts but also gain further insights
about the server, namely the list of its supported versions. We declare an IP address
as QUIC-capable if we either receive a valid version negotiation packet or, in gQUIC,
a public reset packet (comparable to a TCP RST). We build and publish [Rüt19]
ZMap modules implementing this behavior enabling rapid enumeration of QUIC
hosts in the IPv4 space.

3.2.4.1 gQUIC Census in October 2017

gQUIC Hosts. Figure 3.20 shows that the total number of gQUIC-capable IP
addresses (sum of the stacked area) has more than tripled from 186.77K IP ad-
dresses in August 2016 to 617.59K IP addresses in October 2017. As of Octo-
ber, we find IP addresses in 3.04K ASes. To analyze who drives this trend, we
attribute gQUIC IP addresses to providers: we classify IP addresses by i) AS in-
formation, ii) per-IP X509 certificate data (e.g., who issued the certificate, who
owns it), and iii) per-IP rDNS data (e.g., Akamai configures rDNS entries such as
*.deploy.static.akamaitechnologies.com), using data available at Routeviews
and scans.io. As of August 2016, we can already attribute 169.52K IP addresses to
Google. They have since doubled their gQUIC-capable infrastructure to 330.62K
IP addresses as of October 2017, accounting for 53.53% of all gQUIC-capable IP
addresses. We identify Akamai as the second-largest gQUIC-enabler: they started to



92 3. Deployable Transport Optimizations

20.
Aug

201
6

16.
Sep

201
6

14.
Oct

201
6

11.
Nov

201
6

09.
Dec

201
6

06.
Jan

201
7

03.
Feb

201
7

03.
Ma

r 20
17

31.
Ma

r 20
17

28.
Apr

201
7

26.
Ma

y 2
017

30.
Jun

201
7

28.
Jul

201
7

25.
Aug

201
7

22.
Sep

201
7

0.0

200K

400K

600K

#
Ho

sts

35..30
35..34
36..31
36..32
36..34
37..34
37..35
38..34
38..35
39..35
39..37,35
40..37,35
Other

Figure 3.20 Number of gQUIC-capable IP addresses and support for sets of certain gQUIC
versions, here we display versions when there was support by at least 20 000 hosts once. Versions
that first appeared in 2016 are hatched.

increasingly deploy gQUIC on their servers in November 2016, while we find around
983 Akamai IP addresses in August, the number jumped to 44.47K IP addresses in
November 2016. Akamai has since then continued to deploy QUIC having 251.43K
IP addresses as of October 2017 accounting for 40.71% of all gQUIC-enabled IP
addresses.

To classify the remaining 35.54K hosts, we executed TCP HTTP GET / on port 80
for these IP addresses. However, for 23.91K IP addresses, we could not get any data
due to i/o timeouts. Apart from this, we find 7.34K hosts announcing a LiteSpeed
server string, a Web server that added gQUIC support in mid of July 2017 [Lit17].
We find servers announcing gws (1.69K) and AkamaiGHost (1.44K), hinting at even
more Google and Akamai installations. The fourth-largest group of servers announces
Caddy (356) as the server string, this server uses the quic-go [Cle19] library and can
also be used as a reverse proxy for other TCP-only servers.

Takeaway. We observe a steady growth of gQUIC-capable IP addresses, mainly
driven by Google and Akamai. Few IP addresses already use third-party server
implementations.

gQUIC Version Support. Since gQUIC is under active development, it requires
clients and servers to be regularly updated to support recent versions. To understand
how the server infrastructure is updated, Figure 3.20 shows the number of hosts
supporting a specific set of versions (recall: A host may support multiple versions!).
The figure shows that many version combinations have a short lifespan in which old
versions fade away, and new versions appear. For example, hosts supporting version
Q035 down to version Q030 switch to versions Q036, ..., Q032, thus losing support
for two versions. While some versions fade away, we also see that, e.g., version Q035
is supported by almost all hosts throughout our dataset. Even though, to the end
of this observation period support for version Q036 is dropped. While this shows
that some versions offer long-term support, the figure also shows how vibrant the
gQUIC landscape is even though a single Internet giant, Google, mainly push its
development.

Given that some versions introduce radical protocol changes without backward
compatibility, questions concerning the long-term stability of a QUIC-Internet arise.



3.2. Deploying a New Internet Transport – QUIC 93

*.g
oog

levi
deo

.co
m

a24
8.e

.ak
am

ai.n
et

*.g
oog

le.c
om

*.c
.do

cs.g
oog

le.c
om

*.g
oog

levi
deo

.co
m

ww
w.g

oog
le.c

om

*.g
oog

levi
deo

.co
m

*.c
.do

cs.g
oog

le.c
om

*.c
.do

cs.g
oog

le.c
om

goo
gle.

com 100 3200.0

50K

100K

150K

#
Ho

sts

Figure 3.21 Number of hosts giving out the same certificate on the y-axis. First listed common
names for the 10 certificates with the highest coverage shown on the log x-axis.

On the one hand, the ability to easily update the protocol offers the possibility to
introduce new features and thereby to evolve the protocol quickly. On the other hand,
updating Internet systems is known to be notoriously hard. The vast number of legacy
systems raises the question of long-term compatibility — designing implementations
to be easy to update is challenging.

Takeaway. gQUIC is subject to rapid development reflected in frequent version
updates. Given its realization in user space at the application-layer, this property is
likely to stay: future transports can be potentially updated as frequently as any other
application. This observation motivates future measurements to assess the potentially
highly dynamic future Internet transport landscape.

Enumerating gQUIC Domain Names

Methodology. We develop a second tool that finishes the handshake and enables
to further classify previously identified hosts and infrastructures. By accounting
for the mandatory SNI, it can present a hostname that is necessary for the server
to deliver correct certificates when hosting multiple sites on a single server. We
base our tool [Rüt19] on the quic-go [Cle19] library, which we extended to enable
tracing within the connection establishment to extract all handshake parameters (see
Figure 3.19).

IP-based Certificate Scan. In a first step, we cluster all previously discovered
gQUIC-enabled IPs by their X509 certificate hash. This step enables us to better
understand gQUIC-enabled infrastructures. Since the server’s hostname is unknown
at the request time when enumerating the IPv4 address space, we present dummy
domains (e.g., foo.com) to each IP address and retrieve the X509 certificate. The
retrieved certificate provides information on the domain names for which the cer-
tificate is valid, which can indicate the hosting infrastructure. We remark that this
approach yields the default website that is configured at a server and will not identify
different sites in the presence of SNI. We find that 216.64K hosts require SNI and
do not deliver a certificate (for which we account for when scanning domain zones
later). Figure 3.21 shows that we only observe 320 different certificates for the probed
617.59K gQUIC IP addresses. The heavy-tailed distribution shows the top-five (ten)
certificates already represent 95.41% (99.28%) of the IP addresses, most prominently



94 3. Deployable Transport Optimizations

06. Oct 2017 03. Oct 2017 04. Oct 2017 08. Oct 2017
.com .net .org Alexa 1M

#Domains 129.36M (100.0%) 14.75M (100.0%) 10.37M (100.0%) 999.94K (100.0%)
gQUIC-enabled 133.63K (0.1%) 8.73K (0.06%) 6.51K (0.06%) 11.97K (1.2%)
Valid Certificate 2.14K (0.0%) 181 (0.0%) 159 (0.0%) 342 (0.03%)

Timeout 114.63M (88.61%) 10.80M (73.23%) 8.09M (78.06%) 826.67K (82.67%)
Version-failed 29 (0.0%) 6 (0.0%) 1 (0.0%) 5 (0.0%)
Protocol-error 606 (0.0%) 222 (0.0%) 0 (0.0%) 1 (0.0%)

Invalid-IP 322.24K (0.25%) 59.24K (0.4%) 40.15K (0.39%) 15.42K (1.54%)
DNS-failure 13.76M (10.64%) 2.40M (16.26%) 1.18M (11.41%) 49.34K (4.93%)

Table 3.7 gQUIC support in different TLDs and in the Alexa Top 1M list.

Google and Akamai. We validated that these IP addresses truly belong to both
companies by requesting content via TCP and HTTP on port 80 on the same hosts.
We next assess gQUIC support among domain names.

Probing Complete Domain Lists. Presenting a non-existing SNI name in our
previous measurement will miss any server that enforces to present a valid hostname.
Thus, we next assess the gQUIC support by probing complete domain name lists.
That is, we probe all domains in the .com/.net/.org zone files and the Alexa Top
1M list. These zones are available at Verisign [Ver19] (.com/.net) and PIR [Pub19]
(.org). Together they contain more than 150M domains, i.e., about 46% of the
domain space [Ver17]. We use zDNS to resolve the domains, and for each successful
resolution, we use our tool to check for gQUIC support and to grab all parameters
from the connection establishment. The whole process takes roughly 15 h and is
thus feasible to run daily. However, as gQUIC CHLO packets require padding, they
nearly fill the MTU; the scan saturates a 1Gbit/s link easily.

Table 3.7 shows the gQUIC-support in the .com/.net/.org zones as well as in the
Alexa Top 1M list. We define gQUIC-enabled domains as being able to initiate a
gQUIC handshake. A domain is tagged as Timeout when we received no response
to our initial gQUIC CHLO within 12 s, e.g., in the absence of gQUIC support. We
furthermore show some specific errors as well as DNS-failures.

Overall gQUIC-support is very low. Depending on the zone, 0.06% – 0.1% of the
domains are hosted on gQUIC-enabled hosts. Only 1.6% – 2.44% of these domains
present a valid X509 certificate. This questions how many domains really deliver
content via gQUIC.

Landing Page Content. Websites can utilize different server configuration and even
different server implementations for different protocols. The successful establishment
of gQUIC connections does thus not imply that meaningful content is being served. To
assess how many gQUIC-capable domains deliver content similar to their TCP/HTTP
counterparts, we instruct Google’s gQUIC test client (part of the Chromium source)
to download their landing page via gQUIC. We then compare their content to their
HTTP 1.1/2 counterparts, which should be similar if these gQUIC-capable domains
are correctly set up. We disabled certificate checks to probe all capable domains.



3.2. Deploying a New Internet Transport – QUIC 95

Out of the probed 161K domains, 16K (9.8%) return no data and 33K (20.7%)
>1 kB via gQUIC. In the case of the latter, 33K domains (22K served by Akamai)
do deliver content similar to their TCP/HTTP counterpart. We define similarity by
structural Hypertext Markup Language (HTML) similarity (e.g., in the number of
tags, links, images, scripts, ...) and require > 3 metrics to agree to define a Web page
to be similar. Domains delivering similar content over gQUIC are thus in principle
ready to be served by a gQUIC-capable browser. To be discovered by a Chrome
browser, they, however, need to present an alternative service (alt_srv) header via
TCP-based HTTPS pointing to their gQUIC counterpart. 11K domains present this
header via HTTPS (5K hosted by Google and 0 by Akamai) and only 7 via HTTP.
Thus a large share of the domains would not be contacted by a Chrome browser
even though gQUIC support is in principle available. The header further specifies
the gQUIC versions supported by the server, of which at measurement time Chrome
requires gQUIC Version 39. Only 5K domains present this version in their alt_srv
header, all hosted by Google. We remark that our content analysis only regards
landing pages and does not account for additional assets (e.g., images or videos).
Usually, CDNs offer dedicated products for media delivery, whose gQUIC support
could differ. Assessing their gQUIC support in detail, thus provides an interesting
angle for future work.

Takeaway. The limited number of X509 certificates retrieved in our IP-based scan
hints at the small number of different providers currently using or experimenting with
gQUIC. Furthermore, only a small fraction of the monitored domains are hosted on
gQUIC-capable infrastructures — an even smaller fraction can actually deliver valid
certificates for the requested domains. Regardless of the certificate, many gQUIC-
enabled domains do deliver their pages via gQUIC. Still, in our measurements, many
would not be contacted by a Chrome browser, either because of a non-present alt_srv
header or insufficient version support. There is thus a significant potential to increase
gQUIC support.

3.2.4.2 Evolution of gQUIC in 2018 and 2019

We complement our in-depth census from October 2017 with a continuous view on
the evolution of gQUIC-capable hosts in IPv4 fueled by our IP address-based scans.
Figure 3.22 visualized the evolution in 2017, 2018, and 2019.

As shown in Figure 3.22a, right after our census in October 2017, we noticed a sudden
drop in gQUIC support in November 2017. At first, about half of all gQUIC IP
addresses no longer responded, which we could largely attribute to Akamai. While we
received ∼5K public gQUIC RST packets in October 2017 to our probes (similar to
a TCP RST), they spiked to over ∼76K until the 17th of November, 2017 when they
returned to ∼5K. Moreover, we found that gQUIC Version 40 was decommissioned.
Later the Google gQUIC source code documents that Version 40 was an attempt
to move to the IETF frame format. However, a bug in the implementation caused
it to never ship [Chr18c]. Surprisingly, we nevertheless find gQUIC Version 40 for
roughly a month. Whether or not the sudden disappearance of Akamai IP addresses
is related to Version 40 is not known to us. For 2017, we do not find them to reappear.



96 3. Deployable Transport Optimizations

06.
Jan

201
7

10.
Feb

201
7

17.
Ma

r 20
17

21.
Apr

201
7

26.
Ma

y 2
017

07.
Jul

201
7

11.
Aug

201
7

15.
Sep

201
7

20.
Oct

201
7

24.
Nov

201
7

29.
Dec

201
7

0.0
150K
300K
450K
600K

#
IP
s

35,34
36..32
36..34
37..34

37..35
38..34
38..35
39..35

39..37,35
40..37,35
41,39..37,35
Other

(a) gQUIC versions in 2017.
05.

Jan
201

8

09.
Feb

201
8

16.
Ma

r 20
18

20.
Apr

201
8

25.
Ma

y 2
018

29.
Jun

201
8

03.
Aug

201
8

07.
Sep

201
8

12.
Oct

201
8

16.
Nov

201
8

21.
Dec

201
8

0.0
2M
3M
4M
6M

#
IP
s

39..37,35,41
41,39,35
41,39,38,35
41,39..37,35

42,41,39,38,35
43,44,42,41,39,35
43..41,39,35

43..41,39,38,35
44,43,39,35
Other

(b) gQUIC versions in 2018.

04.
Jan

201
9

25.
Jan

201
9

15.
Feb

201
9

08.
Ma

r 20
19

29.
Ma

r 20
19

19.
Apr

201
9

10.
Ma

y 2
019

31.
Ma

y 2
019

21.
Jun

201
9

12.
Jul

201
9

0.0
2M
5M
8M

10M

#
IP
s

44,43,39
44,43,39,35
44,43,39,46
45..43,39

46,43,39
46,44,43,39
Other

(c) gQUIC versions in 2019.
Figure 3.22 Number of gQUIC IP addresses announcing a certain set of versions in
2017/2018/2019 (shown when at least 150k hosts use this version). Note the different
y-axis scales. This also leads to the seemingly visual stability in (c) even though the total
amount still varies as before.

Looking at Figure 3.22b, we observe this does continue for the first quarter of 2018
with only again a version dropout in March.

Akamai to Push gQUIC. At the 30th of March, 2018, we observe a massive
increase (note the different axis scaled from 2017 and 2018) in gQUIC-capable IP
addresses and a new version set to appear. For the first time, we observe that
hosts announce the most recent version as the last version. By again looking at
rDNS entries and routing information for these IP addresses, we find that they
belong to Akamai. At the 10th of April, 2018, we find a corresponding Akamai blog
entry [AC18] explaining that Akamai will ramp up gQUIC as of the 1st of June,
2018. On our scan on the 20th of April, we find another massive increase to over
4M gQUIC-capable IP addresses. We observe that Akamai switches the announced
versions for a part of their servers in May and entirely as of the beginning of June to
announce Version 41 as the first version. Since Chrome will currently only use a single
Google-dictated gQUIC version, we believe this to have been a measure to deploy the
infrastructure but to control who will connect. As of July of 2018, we again find a
slight increase in gQUIC-capable IP addresses and the appearance of gQUIC Version
44 which implements the (at the time current) IETF header format [Chr18b]. In
November 2018, we again observed a significant drop in gQUIC-capable IP addresses.
Only in February 2019, they reappear but this time massively with a new all-time
high of nearly 10M IPs, with roughly 6M IP addresses directly hosted in Akamai
ASes.



3.2. Deploying a New Internet Transport – QUIC 97

Measurement Challenges. Providing long-term measurements is a challenging
task. We have configured our infrastructure to scan every week such that a scan
completes in roughly a single day. Especially, after having set up the scan, it is
unfortunately not enough to only wait to gather enough data. During our measure-
ments, we had several incidents that required manual intervention, ranging from
hard drive failures to protocol changes. For example, in late December 2018, further
gQUIC-capable hosts disappeared which we investigated in January 2019, we found
that Google changed the required minimum packet length. In turn, we adjusted our
measurement tools to account for this. At the same time, we changed which version
we are announcing to follow the reserved versioning scheme introduced with iQUIC.
Further, for no particular reason, we also changed the packet number length from a
single byte to two bytes. In March 2019, we were contacted that we were missing
some servers that should be available for gQUIC. After investigating and discussing
with the contact, we found that our change to two bytes (even though compliant
with Google and covered in the gQUIC drafts) was incompatible with Litespeed
gQUIC. Consequently, we switched back to using one byte. While such changes are
minimal, it can take time to understand their gravity, especially when dealing with
large numbers of results on an Internet-scale. Further, an actively developed protocol
like QUIC demands constant attention to follow the current line of development.
Takeaway. Our measurements reflect the enormous efforts that are put in place to
make QUIC a standardized Internet reality. The observations highlight the deployment
challenges of a new Internet transport, and current efforts in experimenting with
gQUIC highlight the readiness of major Internet stakeholders once QUIC finishes
standardization. As of August 2019, we find Akamai to have the largest gQUIC
deployment in IPv4, followed by Google.

gQUIC Parameterization & Active Fingerprinting

In September 2018, we again performed a comprehensive evaluation of gQUIC.
This time, we focused on gQUIC connection parameterization and if this offers the
potential for fingerprinting server software, hoster, or service. Since QUIC mandates
SNI, our IPv4 data lacks domain names to establish valid connections. We thus
use large domain name lists of > 180 TLDs and perform DNS resolutions from our
university network and subsequently attempt to connect with our quic-go QUIC
client (see Section 3.2.4.1) to gather connection parameters exchanged during the
handshake. In total, we investigate over 180 zones, the largest in our scans are again
the .com/.net/.org zones.
Connection Parameters. We find ∼218K hostnames mapping to ∼19K unique
gQUIC-capable IP addresses residing in 659 different ASes. Over the course of the
handshake, gQUIC allows exchanging a list of arbitrary (tag, value) pairs (see Step
(4) in Figure 3.19), e.g., the stream flow control rwnd (SFCW) tag’s value denotes
the initial stream flow control receive window. We find 32 different tags used in the
handshakes. Of these, we find ten groups with different occurrences as visualized in
Figure 3.23. The gQUIC sources do not even define all of these tags, e.g., the server
ID (SVID) seems to be exclusively used by the quic-go implementation to signal the
implementation similar to the HTTP server header field.



98 3. Deployable Transport Optimizations

IRTT ASAD SVID NCMR MSPC SCFG_TBKP,
SCFG_PDMD

SRST SCLS, RREJ,
SMHL, SNO ,
STTL, CADR,
SHLO_STK

†

Tag

101

103

105

#
oc
cu
rre

nc
es

†: SHLO_SNO, SFCW, STK , SCFG_SCID, SCFG_KEXS, SCFG_OBIT, SCFG_EXPY,
SCFG_AEAD, SCFG, PUBS, PROF, MIDS, ICSL, CRT\xff, CFCW, SCFG_PUBS, VER

Figure 3.23 Different groups of tags having the same number of occurrences and their number
of occurrences in our handshakes. Note the log scale.

AE
SG

AE
SG

, C
C2
0

AEAD

102

105

#
oc
cu
rre

nc
es

12
28
8

12
58
29
12

40
96 51
2

76
8

CFCW [byte]

102

105

30
0 30 5

ICSL [s]

102

105

30
10
00
0

42
94
96
72
95 1 10 10
0

MIDS

102

105

10
48
57
6

52
42
88

32
76
8

65
53
6

13
10
72

SFCW [byte]

102

105

Figure 3.24 Tags and their observed values (x-axis) and how often we found them in the
handshake (y-axis)

Transport Parameters. We focus on mandatory parameters that are required to
exchange data and thus are present at all hosts (†). Some of these tags such as the
source-address token (STK) authenticating the requesters IP address (similar to a
TCP Fast Open cookie) are unique, and we thus focus on five elementary parameters:
the authenticated encryption with associated data (AEAD) contained in the SCFG,
the initial connection flow control receive window (CFCW), the idle connection state
lifetime (ICSL), the maximum incoming dynamic streams (MIDS), and the initial
SFCW.

Figure 3.24 shows the values of the tags and how often we found these values in our
handshakes. Currently, only two different cipher suits (AEAD) are defined, most
hosts seem to support both, and only a small set of hosts support only one. The
CFCW is comparable to TCP’s initial rwnd for the whole connection. We find values
from 512B to 12MB hinting at the required buffer sizes. Smaller values seem to
prevail. Regarding the ICSL, we find three different idle timeouts, i.e., after which
the implementations close the connections when they receive no packets. Surprisingly,
we find that 5 s seem rather short; however, hosts could use ping frames to keep the
connections alive thus also putting pressure on a client to refresh a possible NAT
binding. For this reason, 300 s and even 30 s could lead to losing the binding. Most
servers set low values for the MIDS. Currently, most gQUIC servers seem to adopt
the HTTP/2 recommendation of 100 streams [RFC7540]. Apart from this, we find
ten and 30 as well as much larger values which could be application-specific settings.



3.2. Deploying a New Internet Transport – QUIC 99

Google Caddy Trancent Verizon Unreach AK1 AK2 YouTube Google GMailCloud CDN 8.8.8.8 Beacon
CFCW 768 12582912 12288 4096 12582912 4096 512 768 768 768
ICSL 5 30 5 5 300 5 5 5 5 5
MIDS 100 100 4294967295∗ 100 1 100 100 10 10000 30
SFCW 131072 32768 524288 65536 32768 1048576 131072 131072 131072 131072
Count 71486 137 10 5837 13 1 72896 67427 4 1

*: unsigned int32 max

Table 3.8 gQUIC infrastructures clustered by k-Means.

The SFCW values are significantly larger than those for the whole connection. Here
we find values that seem typical for TCP rwnds in various operating systems (see
Figure 3.4 on Page 70 from our previous contribution).

Fingerprinting. Given this wide variance in the parameters that we observed, we
want to find out if they offer potential to fingerprint, e.g., server implementations,
CPs, or services. While a tag such SVID can be directly used to derive a server’s
implementation, it is well known that connection parameters can be used to fingerprint
different transport protocol implementations such as in p0f [Zal14]. To investigate
the fingerprinting potential, we focus on the four integer-based tags — CFCW, ICSL,
MIDS, and SFCW — and apply a k-means clustering. We increased k until we could
not derive any new classes and arrived at k = 10 classes contained in our data, which
we summarize in Table 3.8. The table lists the configuration of the four tags and the
number of hosts that each class contains.

Subsequently, to derive a ground truth, we labeled each class by inspecting the IP
address AS ownership, DNS redirections, patterns in the hostnames, and server
software used on TCP+HTTP. For large classes, we investigated a random sample,
and for smaller classes, we verified the random sample on all elements in the class.
The Google class accommodates server on Google infrastructure; from our random
sample, we found many hosts to contain Google-specific URL parts or IP addresses
belonging to Google. The Caddy class contains hosts that use the Caddy [HLA18]
Web server, a Web server with gQUIC support, which we found with the help of
the HTTP server string. According to the hostname or ASN, Tencent [Ten18] hosts
the next class (Trancent Cloud), i.e., the company responsible for WeChat. Via
DNS CNAME redirects we find the Verizon class which contains hosts residing in
Verizon’s infrastructure. For 13 hosts in the Unreach class, we are unable to specify
a proper label since we are unable to reach any of these hosts via TCP nor are any
other investigations conclusive. AK1 and AK2 are both hosted by Akamai, as again
indicated via their CNAME, however, the AK1 class contains only a single host. The
YouTube class is rather odd, we find tons of hosts postfixed with googlevideo.com,
but also many other hostnames whose DNS resolves to Google’s public DNS recursor
(8.8.8.8). Interestingly, the YouTube class defines only ten streams (MIDS), which
seems sensible because video delivery does not require many streams. The four hosts
in the Google Beacon class all follow the same naming scheme in the hostnames



100 3. Deployable Transport Optimizations

23.A
ug 2

018

13.S
ep 2

018

04.O
ct 2

018

25.O
ct 2

018

15.N
ov 2

018

06.D
ec 2

018

27.D
ec 2

018

17.J
an 2

019

07.F
eb 2

019

28.F
eb 2

019

21.M
ar 2

019

11.A
pr 2

019

02.M
ay 2

019
0.0
3K
6K
9K

12K
#

IP
s

Scanning for draft-09 - draft-16 Scanning for draft-17

16.
Ma

y 2
019

06.
Jun

201
9

27.
Jun

201
9

18.
Jul

201
9

0.0
200K
400K
600K
800K

Draft-14
Draft-17
Draft-18
Draft-20

MVFST-0,Draft-09
MVFST-0,Draft-17
MVFST-0,Draft-20
MVFST-15

QGO-255
gQ35,gQ39,gQ43,gQ44,gQ46,Draft-20
gQ39,gQ43,gQ46,Draft-20

gQ43,gQ41,gQ39,gQ35
gQ44,gQ43,gQ39
Other

Figure 3.25 Number of iQUIC IP addresses announcing a certain set of versions (excluding
reserved versions) in 2018 and 2019. Only displayed if the version set appeared at more than
25 IP addresses. Annotations highlight when our scanner switched to a wire format version.

containing the word beacon. Here the opposite is visible, a large number of streams
is possible. The last GMail class contains a single host which we found through the
hostname mail-attachment.googleusercontent.com.

Takeaway. gQUIC offers a versatile environment to encode various connection-
specific parameters. We have only peaked in the data and have found a variety of
different configurations and parameters. By looking only at four parameters, we were
able to automatically device meaningful classes for different implementations, hosters,
or services, thus showing potential for extensive fingerprinting — an exciting angle
for future work.

3.2.4.3 The Rise of iQUIC

We now shift our focus away from gQUIC and investigate the rise of iQUIC as
currently standardized by the IETF. To do so, we rely on the same mechanism that
we already exploited for gQUIC, i.e., the version negotiation. However, as gQUIC
and iQUIC are incompatible, we create a separate ZMap module for scanning iQUIC.

2018. As shown in Figure 3.25, we scheduled our first scans for iQUIC in August
2018. Back then, we found little support for iQUIC, and only Facebook’s MVFST
implementation with roughly 300 servers was publicly available. We observed the
largest peak of iQUIC compliant version negotiation in September 2018 with roughly
12k IP addresses, yet, announcing gQUIC versions. We find that the IP addresses
belong to Verizon’s Edgecast CDN; however, they soon after disappeared from the
public Internet. Over the remainder of 2018, we observe that Facebook expands their
iQUIC tests, and over 3k IP addresses are reachable. Since we use the information
published via the IETF QUIC working group’s wiki17 to decode versions, we were
surprised to see QUIC Version 101, i.e., a version that at that time was supposed to
be reserved for ratified standards. After bringing this issue up on the QUIC IETF
mailing list, we learned that a development version of QUIC-GO accidentally uses
this version which was then subsequently changed by the authors. Nevertheless, we

17https://github.com/quicwg/base-drafts/wiki/QUIC-Versions

https://github.com/quicwg/base-drafts/wiki/QUIC-Versions


3.2. Deploying a New Internet Transport – QUIC 101

were unable to figure out who operated the IP addresses as they were hosted in the
Amazon or Google cloud, resided in Chinese ASes and only one IP address hinted at
Alibaba.

2019. At the beginning of 2019, we switched to iQUIC draft-1718 whose wire
format is fundamentally incompatible with the previous drafts. We found only
13 IP addresses of which 12 were still announcing QUIC-101 and one IP address
by Apple that announced draft-14 even though that draft is not compatible with
draft-17 wire format. One week later, we observe an increase of over 100 IP addresses
supporting draft-17 hosted by Cloudflare that further increased in the weeks after.
As of February, draft-17 compliant quic-go (QGO-255) versions appear of which
Alibaba hosts the majority of the IP addresses. At the end of February and in the
first weeks of March, we see a surge of Facebook-hosted IP addresses to appear again
that at first announce MVFST Version 15 and then switch to announcing MVFST
Version 0 as well as Draft-17 itself. As of the 14th of March, draft-18, that the IETF
released in late January 201919, is announced by Cloudflare-hosted IP addresses, by
a single WinQuic implementation by Microsoft (not shown in the figure) as well as
by a single version also announcing gQUIC versions (also not shown). We observe
the most substantial increase in iQUIC-capable IP addresses in June 2019, which
is again driven by Cloudflare. To the end of our observations, we find over 745k
iQUIC-capable IP addresses.

Version Greasing. iQUIC recommends adding random reserved versions to the
version negotiation packet, i.e., this greasing helps that middleboxes do not ossify
around parsing a particular fixed version in the packet at a well-known offset as well
as that clients are forced to be able to handle unsupported versions from the start.
As of the 14th of March 2019, we found 4346 iQUIC IP addresses, of these only
762 greased the version negotiation field. However, this is mostly due to Facebook’s
implementation that contributes 3326 IP addresses not performing this greasing as
well as Cloudflare not doing it. Apart from that we, e.g., observe roughly half of
all quic-go implementations to have the greasing in the first version and the other
half having it in the last version (currently they only announce one non-reserved
version). As of July 2019, the situation remains unchanged, and Cloudflare as the
largest iQUIC-supporter does still not grease. So, in summary, it seems that most
implementations already grease their version negotiation, but some large players still
lack this functionality.

Measurement Challenges. One of the challenges during our measurements was
to keep up with the changes made to the drafts. While we were able to trigger
version negotiation for multiple drafts with a request made for one specific version,
we nevertheless had to implement the changes to the headers to properly validate
the different responses. Unfortunately, when having to perform a hard switch, e.g.,
as to draft-17, one would need to double the effort to monitor the use of both flavors
of the protocol. While we do this for gQUIC and iQUIC, we felt that doing so for
iQUIC twice would mainly increase traffic and abuse while not offering many new
insights. However, as also visible in Figure 3.25, we are, e.g., unable to reasons if

18Draft-17 appeared in mid December 2018
19compatible with draft-17 version negotiation



102 3. Deployable Transport Optimizations

Facebook shut down their servers as of January, e.g., due to a bug or just waited
to transition to draft-17. Another strategy would have been to continue probing
the known IP addresses to follow up on their changes that are out of scope for the
general IPv4-wide probing.

Takeaway. While iQUIC servers do appear in IPv4, their share is far behind gQUIC.
However, we observe a much larger pool of players that seem to experiment with iQUIC
than we observed for gQUIC. Thus, once iQUIC leaves its initial standardization,
and major browsers support it, it seems likely that there will be a more diverse QUIC
landscape than before. However, this may in the end challenge the rollout of new
versions while deprecating others when QUIC is also integrated in other products
besides browsers and Web servers.

3.2.5 Usage: QUIC Traffic Share

We complement our view on QUIC infrastructure with an extended look on QUIC
traffic shares. To this end, we again take an in-depth look at traffic shares in 2017.
Subsequently, we analyze several additional ISP traces one year later.

Traffic Classification

We use protocol and port information to classify HTTPS (TCP port 443), HTTP
(TCP port 80), and QUIC (UDP port 443). We chose this classification since it
applies to all of our traces: MAWI (PCAP header traces) and ISP + IXP (Netflow
traces without protocol headers). Furthermore, QUIC is hard to identify even in
PCAP traces as, by design, it is fully encrypted and, e.g., iQUIC exposes only a
single bit that is useful for classification, thus having a significant potential for
misattribution. We nevertheless remark that our classification can i) miss protocol
traffic on non-standard ports and can ii) wrongly attribute other traffic on the
monitored ports. Regardless of the accuracy, this uninspectable UDP traffic still
impacts network operators as they cannot rely on methods developed for TCP to
analyze the efficiency of their network. This generality also means that it captures
both gQUIC and iQUIC when running on port 443. Thus, our classification reports
an upper bound on the protocol utilization on standard ports.

3.2.5.1 QUIC Census 2017

Complementing our QUIC IP census in October 2017 (see Section 3.2.4.1), we now
regard traffic shares that correspond to the previously presented period. Thus,
restricting our observations to this time enables comparing available infrastructures
and traffic shares.

We quantify the QUIC traffic share by analyzing three traces representing different
vantage points: i) 9 months of traffic in 2017 on a transit link to an upstream ISP
(MAWI dataset [MAW18]), ii) one day in August 2017 at a European Tier-1 ISP,
representing edge (DSL + cellular) and backbone traffic, and iii) the same day at



3.2. Deploying a New Internet Transport – QUIC 103

Overall Operator’s share Share in Protocol
HTTP HTTPS QUIC HTTP HTTPS QUIC HTTP HTTPS QUIC

MAWI 28.0% 44.9% 6.7% - - -

ISP 37.7% 40.1% 7.8% Akamai 67.9% 32.1% 0.1% 27.2% 12.6% 0.1%
Google 1.4% 59.5% 39.1% 0.7% 28.8% 98.1%

Mobile 24.8% 55.4% 9.1% Akamai 57.7% 42.3% 0.0% 28.5% 9.6% 0.1%
ISP Google 1.6% 64.4% 34.0% 1.8% 29.5% 96.9%

IXP 32.2% 30.9% 2.6% Akamai 33.3% 33.3% 33.3% 5.0% 5.2% 59.9%
Google 3.1% 70.0% 26.9% 0.3% 7.2% 33.1%

Table 3.9 Average traffic shares (overall), among the operators, and the protocols. Operator’s
share is, e.g., from all of Google’s traffic, the share of the QUIC traffic at a vantage point.
Share in protocols denotes the traffic share of a protocol at a vantage point, e.g., the amount
of Google’s QUIC traffic from all other QUIC traffic.

01.01 01.02 01.03 01.04 01.05 01.06 01.07 01.08 01.09
Month in 2017

0
20
40
60
80

100

Tr
affi

c
Sh

ar
e
[%

] QUIC
HTTPS
HTTP
Other

Figure 3.26 Traffic share of QUIC compared to HTTP and HTTPS in the MAWI trace.

a large European IXP. We show the per-trace traffic shares in Table 3.9, which we
discuss next.

MAWI Backbone Trace. We start by analyzing traffic on a trans-Pacific WIDE
backbone link provided by the MAWI working group [MAW18]. We analyze
anonymized header traces available at the MAWI repository (samplepoint F). The
monitored link is a transit link connecting the WIDE backbone to an upstream ISP.
The traces involve 15 minutes of traffic captured at 14:00 h on each day. Each packet
is capped to the first 96B.

We begin to analyze traffic on the 1st of January, 2017, since Google enabled
gQUIC for all of its Chrome and Google-developed Android App users in January
2017 [LRW+17]. Figure 3.26 shows the traffic volume until the end of September
2017. The trace shows that the QUIC traffic share is 0.0% in January, in contrast
to the Google report of having widely enabled gQUIC in January. This abstinence
suggests that the monitored user-base is not using Google products (e.g., Chrome)
at the time, QUIC has not been enabled for this network, or that traffic is routed
differently. We observe the first QUIC traffic in February, where the QUIC traffic
share is at 3.9%. It continues to increase to 5.2% in March and reaches 6.7% in
September. QUIC offers an alternative to TCP+TLS, which is the foundation of
legacy HTTPS, its share is at around 44.9%, even the unencrypted version HTTP
is still at around 28.0%. As the provided trace anonymizes destination and source



104 3. Deployable Transport Optimizations

02 04 06 08 10 12 14 16 18 20 22 000
20
40
60
80

100
[%

]

02 04 06 08 10 12 14 16 18 20 22 00

bi
t/
s

Time of day on a Fri to Sat in Aug 2017 [h]

Akamai QUIC
Google QUIC

Other QUIC
Akamai HTTPS

Google HTTPS
Other HTTPS

Akamai HTTP
Google HTTP

Other HTTP
Other Traffic

Figure 3.27 QUIC traffic share in a major European ISP (up- and downstream). Left, relative
share of QUIC. Right, total traffic compared to HTTP(S), y-axis has been anonymized at the
request of the ISP. Nearly all QUIC traffic is served by Google.

addresses, we cannot attribute this traffic to infrastructures (e.g., Google or Akamai)
or services (e.g., YouTube) which we found to have the largest server installations.
We leave this analysis to the ISP trace for which we have AS-level information
available.

Takeaway. Within nine months after its general activation by Google, QUIC already
accounts for a non-negligible traffic share, demonstrating its ability to evolve Internet
transport.

European Tier-1 ISP. We obtained anonymized and aggregated Netflow traces
from all border routers of a large European ISP for one day in August 2017. The
Netflow traces were aggregated to 5-minute bins and all IP addresses were replaced
by the corresponding ASN before they were made available to us. Thus the traces
do not reveal the behavior of individual users. The captured traffic contains i) edge
traffic by DSL, ii) cellular customers, and iii) transit backbone traffic.

Figure 3.27 shows the traffic volume (up- and downstream) for 24 h by protocol and
prominent infrastructures (we removed the traffic volume (y-axis) at the request of
the ISP). As our previous host-based analysis (see Section 3.2.4.1) showed that, in
2017, mainly Akamai and Google support QUIC, we also show their traffic shares
(according to their ASNs). At first, we observe that QUIC traffic follows the same
daily pattern as HTTP and HTTPS. On average, QUIC accounts for 7.8% of the
traffic with a standard deviation of σ: 1.0%. This deviation is similar to HTTP
(σ: 1.2%) and HTTPS (σ: 1.4%), which account for 37.7% and 40.1% of the traffic,
respectively.

Google almost exclusively supplies the observed QUIC traffic: They account for 98.1%
of the overall observed QUIC traffic. Among all of Google’s traffic, 39.1% is using
QUIC (σ: 2.3%), peaking at 42.1%. This share is a larger than the global average of
32% reported by Google in November 2016 [LRW+17]. In 2017, Google-developed
applications (e.g., Chrome or the Youtube Android app) primarily supported QUIC.
In the absence of QUIC libraries, third-party support is low (e.g., at that time Opera
had optional QUIC and Firefox had no QUIC support). The availability of QUIC
libraries thus has the potential to improve client support drastically and therefore
increase QUIC’s traffic share.



3.2. Deploying a New Internet Transport – QUIC 105

02 04 06 08 10 12 14 16 18 20 22 000
20
40
60
80

100
[%

]

02 04 06 08 10 12 14 16 18 20 22 00

bi
t/
s

Time of day on a Fri to Sat in Aug 2017 [h]

Akamai QUIC
Google QUIC

Other QUIC
Akamai HTTPS

Google HTTPS
Other HTTPS

Akamai HTTP
Google HTTP

Other HTTP
Other Traffic

Figure 3.28 Mobile network traffic share of QUIC in a major European ISP. Left, relative
share of QUIC traffic. Right, absolute traffic share compared to HTTP(S), y-axis has been
anonymized at the request of the ISP.

In contrast, Akamai only serves 0.1% of its traffic via QUIC — despite contributing a
large portion of the overall QUIC-capable IP addresses (40.71%, see Section 3.2.4.1).
This discrepancy between the number of IP addresses and the traffic share suggests
that QUIC is not yet widely activated among all customers/products. Still, on
average, Akamai accounts for 10.3% (HTTP) and 5.1% (HTTPS) of all traffic, and
thus, together with the fact that they already have a QUIC-capable infrastructure,
has the potential to shift more traffic towards QUIC. A higher QUIC share has
several implications, while QUIC and TCP are generally similar, subtle differences
in the protocols may influence the performance of whole networks, e.g., by default
QUIC uses larger IWs than those standardized for TCP by the IETF and demands
to pace for smoothing the traffic. Further, network operators have raised serious
concerns regarding the manageability of their networks [IET17a]. As QUIC fully
encrypts all headers and thus hides signaling information from a passive observer
(which generally enhances privacy), network operators cannot use passive network
traces to estimate KPIs such as the RTT20, reordering, or loss.

Takeaway. As we have seen, Google already pushes 39.1% of its traffic via QUIC,
thus network operators may already be challenged in parts of their network. An
Internet giant, such as Google with its own browser, server infrastructure, and
services, has the power to transform within short amounts of time regardless of
operator concerns.

Mobile ISP. The ISP supplied us with information which traffic is for their mobile
(cellular) customers, which we show in Figure 3.28. Please note that Figure 3.27
also contains this reported mobile traffic. In contrast to the entire network of the
ISP, the mobile traffic shows a different traffic pattern: while the throughput also
decreases overnight, mobile traffic rapidly increases in the morning and stays rather
constant over the day.21 Apart from this, the average QUIC share in the mobile
network of 9.1% (σ: 1.4%) is the highest share among all traces (see Table 3.9). In
contrast, among the entire mobile Google traffic, only 34.0% (σ: 2.6%) is served via
QUIC, lower than overall for the ISP. Also for mobile traffic, Akamai only serves a

20iQUIC, after lengthy discussions in the IETF offers a SPIN-bit that can be used to passively
observe the RTT, see [DBK+18] for an in-depth analysis and explanation.

21We also verified with the ISP that the links are not fully-loaded and more capacity would be
available.



106 3. Deployable Transport Optimizations

03 05 07 09 11 13 15 17 19 21 230
20
40
60
80

100
[%

]

03 05 07 09 11 13 15 17 19 21 23

bi
t/
s

Time of day on a Fri in Aug 2017 [h]

Akamai QUIC
Google QUIC

Other QUIC
Akamai HTTPS

Google HTTPS
Other HTTPS

Akamai HTTP
Google HTTP

Other HTTP
Other Traffic

Figure 3.29 QUIC traffic share at a large European IXP. Left, relative share of QUIC traffic.
Right, absolute traffic share compared to HTTP(S), y-axis has been anonymized at the request
of the IXP.

negligible share of its traffic via QUIC and thus has the potential to increase the
QUIC traffic share.

Takeaway. QUIC traffic shares do not (yet) reflect server support. While Akamai
operates a comparably large infrastructure in the number of QUIC-capable IP addresses,
QUIC traffic is (still) almost entirely served by Google: this is likely to change.

European IXP. We obtained sampled flow data of a large (European) IXP for the
same day in August as for the ISP, and we show its traffic share in Figure 3.29. We
classify Google and Akamai traffic by customer port information — since both peer
at the IXP — and plot their HTTP(S) and QUIC traffic shares similar to the ISP.
On average, QUIC accounts for 2.6% (σ: 1.0%) of the traffic, which is the lowest
share among all traces (see Table 3.9). Unlike the ISP, Akamai now supplies the
largest portion of traffic (59.9%), and we observe a lower share of Google traffic
(33.1%) — recall that Google contributed 98.1% of the QUIC traffic at the ISP.

Discussion. We observe different QUIC traffic shares at the ISP/IXP and partic-
ularly different shares of the QUIC traffic by Google and Akamai (relative to the
overall traffic of each vantage point). Different traffic engineering (TE) strategies
likely cause these vantage-point-dependent differences, since both providers peer at
both vantage points. These differences highlight that observed traffic shares are,
in general, highly vantage-point-dependent. Understanding the incentives for these
different TE strategies is an interesting starting point for future research.

3.2.5.2 Beyond the Census: Traffic Shares in Access Networks

Since our census in October 2017, we have observed significant increases in gQUIC-
capable infrastructure (see Section 3.2.4.2), it opens the question if QUIC traffic
also increased. We therefore now look at QUIC traffic through the lens of eyeball
networks.

We were able to obtain six additional traces from the ISP: i) one day in the mid of
March 2018, i.e., when Akamai did not yet reactivate their infrastructure, ii) one
full week from the 30th of March to the 5th of April, 2018, i.e., during the week that
Akamai’s infrastructure increased, iii) the 20th of March and the 4th of May, 2018,



3.2. Deploying a New Internet Transport – QUIC 107

18.A
ug 2017

23.M
ar 20

18

30.M
ar 20

18

31.M
ar 20

18

01.A
pr 20

18

02.A
pr 20

18

03.A
pr 20

18

04.A
pr 20

18

05.A
pr 20

18

20.A
pr 20

18

04.M
ay 2

018

01.J
un 2018

15.J
ul 20

18

17.A
ug 2018

Date

0

10

20
Tr
affi

c
Sh

ar
e
[%

] Mobile peak
ISP peak

Mobile mean
ISP mean

Figure 3.30 QUIC shares over all ISP traces, mobile network shown separately. Error bars
denote the std. dev. And the horizontal lines denote the respective peak share.

i.e., two weeks and one month after the infrastructure activation, iv) the 1th of June,
2018, i.e., when Akamai announced that they would serve QUIC, v) the 15th of July,
2018, i.e., over one month after Akamai claiming to have it activated, and vi) finally,
precisely on the same weekday in August one year after our initial trace that we
inspected in Section 3.2.5.1.

Given that there is gQUIC support in Chrome, and currently no iQUIC support in
any production browser, the traffic in this timeframe likely stems from gQUIC22. For
our first analysis, we focus on the overall QUIC share and peak QUIC shares across
all traces.

QUIC Traffic Shares

We again investigate QUIC traffic shares in the ISP and in its mobile network. We
show the evolution of QUIC traffic in this ISP by its mean (bars) and the standard
deviation (errors on the bars), and peak (horizontal lines) traffic share for each day
and show it in Figure 3.30.

For all dates, we find that the mobile network contains a higher share of QUIC traffic
compared to the whole ISP. These shares increase throughout our observations. The
first to last observation point spans one year, within these extrema, we observe that
the average QUIC traffic share has increased from 9.1% (7.8%) to 15.3% (10.8%) in
the mobile network (whole ISP). Similarly, the peaks for the mobile network (whole
ISP) have increased from 13.2% (9.7%) to 18.7% (13.5%), yet we find the highest
peak in mid-July (mid-April) of 20.0% (15.0%).

Since network traffic is known to be dependent on the weekday, we investigate one
full week starting on Friday the 30th of March until Thursday the 5th of April. In
this week, we observe the highest QUIC traffic shares on Monday and Sunday, which
then decrease during the week. Still, on average, the shares are very comparable
since their average fluctuations are within the typical daily variations. Throughout
that week, all shares (even the peak shares) are within 2.5% points of each other.

22The measurement inaccuracies highlighted in Section 3.2.5 still apply.



108 3. Deployable Transport Optimizations

Takeaway. The Internet transports an increasing amount of its traffic via QUIC.
Our ISP’s mobile network shows a significantly larger QUIC share than the rest of
the network. We observed peaks up to 20.0%.

While this analysis provides an overview of the overall traffic share, it fails to
illuminate which networks produce this traffic and how much traffic in these networks
is already QUIC which is the focus of the next section.

QUIC Shares by Operator

In Section 3.2.4.2, we have seen that Akamai has significantly increased their in-
frastructure support at the end of March 2018 after shutting it down in late 2017.
Further, Akamai has announced [AC18] to increase the QUIC share for a part of
their services starting on the 1st of June, 2018.
Previously, as of August 2017, we found Akamai to contribute only an insignificant
portion of all QUIC traffic (0.1%) within our ISP. Please note, that we do no expect
Akamai’s traffic share to scale with their number of IP addresses, since, as a CDN,
only a fraction of all their IP addresses will handle our ISP’s traffic. Still, we did find
that Akamai handles a significant amount of all traffic, i.e., potential QUIC traffic.
Since we found that the mobile network contains most QUIC traffic, our first analysis
focuses on its evolution. Figure 3.31 and Figure 3.32a together show four full days in
the mobile network (other days are similar). Given our observations in Section 3.2.4.2,
we differentiate between Google (stars), Akamai (dots), and the rest (crosses). We
further highlight the traffic mix between HTTP (yellow), HTTPS (red), and QUIC
(blue).
Mobile Network. After one year, we find that our initial observation from 2017
did not change much. We still find that Google contributes nearly all QUIC traffic.
Thus also the increases that we observed can be attributed to Google.
This increase can have multiple reasons, for once, Google’s total traffic share has
slightly increased, more customers utilize a Google product that is QUIC-enabled
(e.g., Chrome), or Google’s QUIC shows a better performance than TCP and Google
thus chooses it for more users. Supporting this, we observe that over the year, Google
delivered, on average (in chronological order of the plots), 64.4%, 45.9%, 44.7%,
45.0% of their traffic on average via HTTPS. On the other hand, the average amount
of QUIC traffic that flows from and to Google increased: 34.0%, 53.4%, 54.5%, 54.4%.
Thus, more than half of the traffic between Google and our ISP’s mobile network
is now QUIC. For a mobile network operator, this means that most of the traffic
cannot be directly used to measure the network quality for traffic flowing between
Google and the ISP. Thus, an operator could choose to encapsulate all QUIC traffic,
e.g., to be able to trace the order of packets traversing the network, which could lead
to decreased performance when encapsulation consumes parts of the MTU23.
Looking at daily changes, we observe that the pattern that we observed in 2017 did
not change, with one exception on the 15th of July with two peaks between 16:00 h

23Google’s QUIC code defaults to a conservative maximum packet size of 1350 byte, thus, currently,
it is unlikely that encapsulation leads to further reduced performance.



3.2. Deploying a New Internet Transport – QUIC 109

02 04 06 08 10 12 14 16 18 20 22 000
20
40
60
80

100
[%

]

02 04 06 08 10 12 14 16 18 20 22 00

bi
t/
s

Time of day on a Fri to Sat in Aug 2017 [h]

Akamai QUIC
Google QUIC

Other QUIC
Akamai HTTPS

Google HTTPS
Other HTTPS

Akamai HTTP
Google HTTP

Other HTTP
Other Traffic

(a) 18. August 2017

02 04 06 08 10 12 14 16 18 20 22 000
20
40
60
80

100

[%
]

02 04 06 08 10 12 14 16 18 20 22 00

bi
t/
s

Time of day on a Mon to Tue in Apr 2018 [h]
(b) 2. April 2018

02 04 06 08 10 12 14 16 18 20 22 000
20
40
60
80

100

[%
]

02 04 06 08 10 12 14 16 18 20 22 00

bi
t/
s

Time of day on a Sun to Mon in Jul 2018 [h]
(c) 15. July 2018

Figure 3.31 Mobile network QUIC traffic shares annotated by Google and Akamai. Left:
Relative share. Right: Absolute share, please note that we anonymized the y-axis on request of
the ISP.

and 18:00 h from Akamai via HTTPS24. This lead to a relative change in the QUIC
volume, yet, the total traffic share stays similar.

Other Parts of the ISP. We continue our analysis by investigating how our ISP
is influenced in other areas than the mobile network. Figure 3.32 extends our view
by further investigating QUIC shares in transit traffic (Figure 3.32b) and towards
non-mobile ISP end-users (Figure 3.32c). Focusing on Figure 3.32b, we observe that
transit traffic of our Tier-1 ISP contains significantly less QUIC traffic than the
other parts of the network. Since we found Google to be the only significant QUIC
producer, this makes sense, Google and other CPs are known to heavily peer with
eyeball networks having flattened the Internet hierarchy (see Section 2.1). We find
4.1% QUIC on average peaking at 5.7% on this day. When shifting to Figure 3.32c,
i.e., to other ISP end-users, like DSL costumers, the relative distribution is similar
to that of the mobile network. However, in comparison, we find slightly reduced
amounts of QUIC: on average 12.8% peaking at 15.6% compared to 15.0% peaking
at 18.7% in the mobile network.

24We believe both peaks correspond to the two halftimes of the FIFA World Cup final that was
widely streamed via Akamai-based services.



110 3. Deployable Transport Optimizations

02 04 06 08 10 12 14 16 18 20 22 000
20
40
60
80

100
[%

]

02 04 06 08 10 12 14 16 18 20 22 00

bi
t/
s

Time of day on a Fri to Sat in Aug 2018 [h]

Akamai QUIC
Google QUIC

Other QUIC
Akamai HTTPS

Google HTTPS
Other HTTPS

Akamai HTTP
Google HTTP

Other HTTP
Other Traffic

(a) Mobile network traffic.

02 04 06 08 10 12 14 16 18 20 22 000
20
40
60
80

100

[%
]

02 04 06 08 10 12 14 16 18 20 22 00

bi
t/
s

Time of day on a Fri to Sat in Aug 2018 [h]
(b) Transit traffic.

02 04 06 08 10 12 14 16 18 20 22 000
20
40
60
80

100

[%
]

02 04 06 08 10 12 14 16 18 20 22 00

bi
t/
s

Time of day on a Fri to Sat in Aug 2018 [h]
(c) ISP end-users.

Figure 3.32 QUIC traffic split by source/destination annotated by Google and Akamai for the
18th August, 2018. Left: Relative share. Right: Absolute share, please note that we anonymized
the y-axis on request of the ISP.

Akamai. In contrast to our observation (Section 3.2.4.2) that Akamai operates the
most extensive QUIC infrastructure, we were surprised that they are not pushing
large fractions of their data via QUIC, even after having announced to ramp up
QUIC shares in June 2018. Still, we do find Akamai originating QUIC traffic in
our datasets; however, compared to the total volume, it simply does not visually
appear in our plots. For example, we find that Akamai contributed 0.3% of all QUIC
traffic in our transit trace. We thus set out to investigate how Akamai’s QUIC traffic
changes for our datasets.

To this end, Figure 3.33 shows the evolution of QUIC for Akamai. To investigate how
Akamai rolls out and tests QUIC, we plot the average share of QUIC compared to
HTTP and HTTPS pushed by Akamai and normalize all observations to our initial
observation from 2017. We see that for our second trace, QUIC traffic nearly ceases
to exist which corresponds to our earlier findings that the infrastructure was shut
down. We then see a gradual increase of QUIC when the infrastructure is reactivated,
and especially the mobile network quickly surpasses the original share. Over the
week in March/April, we see that the QUIC share fluctuates slightly. Since QUIC is
likely not activated for all services, such variations could be explained by different



3.2. Deploying a New Internet Transport – QUIC 111

18.A
ug 2

017

23.M
ar 2

018

30.M
ar 2

018

31.M
ar 2

018

01.A
pr 2

018

02.A
pr 2

018

03.A
pr 2

018

04.A
pr 2

018

05.A
pr 2

018

20.A
pr 2

018

04.M
ay 2

018

01.J
un 2

018

15.J
ul 2

018

17.A
ug 2

018

Date

0

1

2

Re
lat

ive
Ch

an
ge ISP

Mobile

Figure 3.33 Change in QUIC share (from HTTP+HTTPS) pushed by Akamai, normalized to
the first datapoint.

demand for different services. In June, i.e., at the officially announced Akamai QUIC
enabling date, we find QUIC shares to go back to nearly zero. For the whole ISP,
we observe that traffic is then again increased.

Takeaway. We find QUIC in all parts of our ISP with varying traffic shares. While
the absolute traffic peaks at a fifth of the total volume, traffic to individual peers can
be dominated by QUIC (Google) demonstrating the need for manageability in QUIC.
Even though Akamai announced a QUIC rollout, we still find Google to dominate
the traffic mix, and it appears that Akamai tests QUIC on a small subset of their
customers.

As we have seen, QUIC is being largely deployed and mainly driven by Internet
giants. While these giants seem to put a significant effort into making QUIC an
Internet reality, our analyses up to now have not focused on whether or not it is
actually beneficial for them. For example, Google acknowledges [LRW+17] that QUIC
consumes roughly ×3.5 more central processing unit (CPU) time than TLS+TCP.
This thus begs the question if QUIC is really so much better than TCP that these
increased loads are worth the potential performance gains.

3.2.6 The Performance of gQUIC Against an Optimized TCP+
TLS+HTTP/2 Web Stack

Given QUIC’s motivation to increase performance, it is no surprise that there are
studies [CDM15, BG16, MKM16, CMT+17, KJC+17, YXY17] showing that QUIC
clearly outperforms the traditional Web stack (i.e., HTTP over TLS over TCP).
These studies are nevertheless subject to several limitations, e.g., many studies
utilize the page load time (PLT) to measure performance. However, it has been
shown [KRB+17, ZWH17, BDM+17] that PLT does not correlate well with human-
perceived performance. Another shortcoming is that all studies compare a highly
optimized QUIC against an off-the-shelf Web stack which, however, offers similar
optimization potential, as we have shown in Section 3.1, that is not used. For
example, Google QUIC shipping with the Chromium code utilizes packet pacing and
an IW of 32 segments. In contrast, a stock Linux TCP stack with default settings



112 3. Deployable Transport Optimizations

will not pace and defaults to an IW of ten segments, obviously disadvantaging the
regular Web stack that can be avoided by parametrizing TCP similar to QUIC.

While QUIC offers a new level for protocol customization and evolution, it remains
questionable from a performance point-of-view if switching to QUIC should be a
top priority. To this end, we ask and answer three questions. First, does QUIC
outperform a tuned TCP Web stack from a technical view? Second, do humans even
notice a difference? Finally, if they notice a difference, how much of a difference does
it make? That is, does QUIC actually impact the QoE?

To answer these questions, we first build a testbed that allows reproducible measure-
ments of both protocols. This testbed enables us to perform an unbiased comparison
between the two stacks. To this end, we are going to modify the Mahimahi [NSD+15]
framework and incorporated the gQUIC Web stack. Our modifications grant us
full control over the network parameters, i.e., bandwidth, delay, and queues as well
as the client and server, i.e., enabling to modify the protocol’s parameterization
for comparable measurements. We then use video recordings of website visits in
our testbed to perform studies in a controlled lab environment, using an online
crowdsourcing marketplace, and a voluntary crowd study to investigate the QoE of
QUIC.

3.2.6.1 Web Performance Metrics

We aim to evaluate the performance of the protocol stacks on a broad set of stan-
dard Web performance metrics. Besides network characteristics like goodput or
link utilization as measured in [CDM15, YXY17], PLT is the most used metric.
Nevertheless, PLT does not always match user-perceived performance [KRB+17,
ZWH17, BDM+17], e.g., it includes the loading performance of below-the-fold content
that is not displayed and thus not reflected in end-user perception. This lack of
depicting user-perception is why we decide to focus more closely on state-of-the-art
visual metrics that are known to better correlate with human perception. These
metrics are derived from video recordings of the pages loading process above-the-fold
as recommended by [BAM11, GDA17].

Metrics of interest are the time of the FVC, LVC, and time the website reaches visual
completeness of a specific threshold in percent. In our case, Visual Completeness
85% (VC85), which corresponds to the point in time measured from the navigation
start when the currently rendered website’s above-the-fold matches to 85% the final
website picture. Only navigation start can be used as a starting point since visual
metrics are solely derived from video recordings. Lastly, we also take into account
the SI [Goo19b].

3.2.6.2 Repeatable Protocol Performance Evaluations

To compare the performance of website loading processes subject to different protocol
configuration, we require a controlled testbed approach that enables repeatability.
Our testbed relies on a rich emulation framework that we build on top of the



3.2. Deploying a New Internet Transport – QUIC 113

Protocol Description
TCP Stock TCP (Linux): IW10, Cubic
TCP+ IW32, Pacing, Cubic, tuned buffers, no slow start after idle
TCP+BBR TCP+, but with BBR as CC
QUIC Stock gQUIC: IW32, Pacing, Cubic
QUIC+BBR gQUIC, but with BBR as CC

Table 3.10 In total, we regard six different protocol configuration in our tests.

Mahimahi framework [NSD+15]. We will highlight the most significant changes as
well as the parameterization that we apply for our performance measurements and
the subsequent user studies. Furthermore, we rely on the Chromium browser to
request websites as it has the most up-to-date and likely best-engineered support for
gQUIC.

Enabling Repeatability. To enable repeatability in our testbed, we extend the
Mahimahi framework [NSD+15] to replay websites. Mahimahi allows replicating the
multi-server nature of today’s websites by first recoding traffic which is subsequently
analyzed to replicate the exact hosting structure. By default, Mahimahi does not
support QUIC nor configuring transport protocol related parameters. To this end,
we added these requirements by essentially replacing parts of the record and replay
infrastructure of Mahimahi and incorporated the gQUIC Web stack in Version 43.
We further replace the default Apache server by the NGINX Web server which is
known to have better performance and is more familiar to us. We take special care in
ensuring that the right protocol variant is chosen by explicitly enforcing Chromium
to either deactivate QUIC or demanding it on specific domains.

Protocol Parametrization. For TCP, we configured pacing and an IW of 32
segments to match the gQUIC defaults. Moreover, we configured it to not fall
back to the IW after idle, even though we expect our connections to not idle when
requesting websites. Furthermore, we experiment with enabling BBR on both
protocols. Table 3.10 summarizes the different protocol variants that we regard.

A single website visit in our testbed is done using a fresh Chromium browser with an
empty cache. This starting from scratch has several implications on the protocols: it
means that QUIC will not perform a 0-RTT connection establishment but a 1-RTT
handshake. Since there is no support for TLS 1.3 early-data in Chromium (as of
June 2019) and the limited and challenging deployment of TCP Fast Open in the
Internet (see Figure 3.1 from our initial measurements in this chapter), this still gives
a 1-RTT advantage of QUIC over TCP+TLS+HTTP/2 on paper. QUIC, similar to
early-data and TCP Fast Open, suffers from replay attacks, which have an unusually
large surface in distributed clusters [FG17] when requests are non-idempotent (see
Section 2.3.2.1 for further details on the connection establishment and the problems
with 0-RTT). To this end, e.g., Cloudflare only allows non-parameterized GET
requests via TLS 1.3 0-RTT [Sul17]. In summary, there is currently a lack of
signaling idempotency through the stack such that 0-RTT data processing could be
enabled easily on a large scale. Thus, we believe that comparing a 1-RTT QUIC



114 3. Deployable Transport Optimizations

tel
eg
rap

h.c
om

wi
kip

ed
ia.
org

gn
u.o

rg

wo
rdp

res
s.c
om

ph
pb
b.c

om
w3
.or
g

ed
.go

v

gra
va
tar
.co

m
op
era

.co
m

go
og
le.
co
m

go
v.u

k

sta
tco

un
ter
.co

m
ap
ac
he
.or
g

ms
n.c

om
joo

ml
a.c
om

sp
oti
fy.
co
m

sci
en
ced

ire
ct.
co
m

bit
.ly

im
gu
r.c
om

do
tda

sh
.co

m
ets
y.c
om

res
ea
rch

ga
te.
ne
t

na
tur
e.c
om

ac
ad
em

ia.
ed
u

im
db
.co

m
pin

ter
est
.co

m
yo
utu

be
.co

m
int
el.
co
m

de
mo

rge
n.b

e
ha
rva

rd.
ed
u

fac
eb
oo
k.c
om

red
dit
.co

m

sci
en
cem

ag
.or
g

ca
nv
as.
be

git
hu
b.c

om
co
lum

bia
.ed

u
vtm

.be
ny
tim

es.
co
m

0

2

4

6
Si
ze

[M
B]

0

10

20

30

IP
ad
dr
es
se
s[

#
]

Website size
IP addresses

Figure 3.34 This figure depicts the download size of the replayed websites (blue) and the
number of unique IP addresses that need to be contacted for resources (red).

with a 2-RTT TCP/TLS reflects a likely Internet-wide deployment of both, even
though we will see 0-RTT QUIC and TLS 1.3 early-data in parts.

Websites Selection. Choosing websites that replicate a real-world picture of
commonly used websites is challenging. Our goal is to obtain a small set of domains
diverse in size, resources, and contacted servers. As there is no standard test set of
such websites, we use the domain collection from [WMQ+18] consisting of 40 different
websites from which we had to exclude two from the technical evaluation and two
additional ones from the user studies. One domain is a private project website, and
the other failed to record and reply properly. The two additional domains that we
exclude from the user study take too long to load. The domains ultimately originate
from the Alexa Top 50 and Moz Top 50 ranking lists and have been chosen in a
way to obtain a good distribution of page size and resource counts [WMQ+18], see
Figure 3.34. The bars in red suggest that the majority of our tested sites use a
multi-server infrastructure, highlighting the relevance of replicating it with Mahimahi.

Network Parameter Selection. Within our study, we want to cover the perfor-
mance in “good” networks as well as in “bad” networks. To this end, we select four
different network settings, which we summarize in Table 3.11. We emulate the differ-
ent network parameters with the help of the built-in tools from Mahimahi. We stack
the following three network parameters from server to client with Mahimahi shells.
First, we delay a packet in each direction, both adding up to the desired minimum
RTT. Second, the link shell implements a drop-tail buffer limiting the throughput
per direction. Finally, the loss shell drops packets at random for both directions
equally. We configure it such that the chance for the successful transmission of two
packets, e.g., request and response, equals 1-p, with p being the desired loss rate.

We chose the median bandwidth of German households according to the German
Federal Network Agency’s website [zaf18], which we refer to as DSL. This network
has no artificial random loss, and we set a low minimum RTT to which the queue
adds further jitter (up to 12ms). Similarly, we use median bandwidth values for



3.2. Deploying a New Internet Transport – QUIC 115

Network Uplink Downlink min. RTT Loss
DSL 5Mbit/s 25Mbit/s 24ms 0.0%
LTE 2.8Mbit/s 10.5Mbit/s 74ms 0.0%
DA2GC .468Mbit/s .468Mbit/s 262ms 3.3%
AMSS 1.89Mbit/s 1.89Mbit/s 760ms 6.0%

Table 3.11 Network configurations. Queue size is set to 200ms except for DSL having 12ms.

German mobile users, which we refer to as Long Term Evolution (LTE). Even though
it is a wireless link, we set no artificial loss as the link-layer would recover it. Still, the
min. RTT is already higher. Furthermore, we allow up to 200ms of queuing. Lastly,
we take network parameters for two “bad” in-flight WiFi networks that connect
either via LTE to the ground (Direct Air-to-Ground Communications (DA2GC)) or
via an in-flight satellite connection (aeronautical mobile-satellite service (AMSS)).
Those parameters have been established in [RNB+18] and are characterized by low
bandwidths and high delays as well as high random loss (see Table 3.11).

Producing Videos. We perform the actual measurements inside a virtual machine
equipped with six cores and 8GB of memory running Arch Linux kernel Version
4.18.16. To measure a single setting, consisting of one website, network, and protocol
configuration, we configure a Mahimahi replay shell with the desired network stack.
A single setting gets measured over 31 runs to gain statistical significance and
at the same time keep the number of runs/videos manageable. We utilize the
Browsertime [sit19] framework to instrument the browser. It records videos of the
loading process that we subsequently evaluate for the visual metrics. For each run,
Browsertime opens up a fresh Chromium browser Version 70.0.3538.77. In total, this
leads to 760 configurations (38 domains, four network, and five protocol settings).
We validated that each run completed successfully by reviewing the video recordings
manually. For the user study, we then select a single video for each setting that
closely fits a typical recording by taking the video that is closest to the average PLT
inspired by [ZWH17].

3.2.6.3 QUIC vs. TCP: According to Web Performance Metrics

We evaluate the performance difference with all metrics in the different network
settings (across all tested websites) employing a performance gain. The following
equation explains the calculation of the performance gain between a reference protocol,
e.g., TCP and a protocol to compare with like QUIC. X correspond to the mean
over the 31 runs.

performance gainT CP
QUIC = XQUIC −XT CP

XT CP

If not stated otherwise, numbers provided in the text are mean performance gains
across all websites for SI. Besides comparing means, we also utilize an analysis of
variance (ANOVA) test to tell whether there is a statistically significant difference



116 3. Deployable Transport Optimizations

-.5 -.25 0
.

0.00

0.25

0.50

0.75

1.00

CD
F

-.5 -.25 0
.

-.5 -.25 0
.

-.5 -.25 0
.Performance Gain

(a) DSL Network

-.5 -.25 0
.

0.00

0.25

0.50

0.75

1.00

CD
F

-.5 -.25 0
.

-.5 -.25 0
.

-.5 -.25 0
.Performance Gain

(b) LTE Network

QUIC

QUIC+BBR

TCP

TCP+

TCP+BBR

Figure 3.35 DSL and LTE network performance. CDF of the performance gain over all websites
with TCP as reference protocol. If the performance gain is < 0 (left side of plot) then the
compared protocol is faster than TCP.

in the distribution of the 31 runs of two protocols. If the ANOVA test for two
settings is p < 0.01 (significance level), we count the setting with the lower mean as
significantly faster; otherwise, we cannot conclude. The results of our measurements
are depicted in Figure 3.35 and Figure 3.36. We show the cumulative distribution
functions (CDFs) of the performance gain of the different metrics comparing stock
TCP to the other protocol stacks. LVC is left out in these figures because, in contrast
to PLT, there is no relevant difference visible.

DSL and LTE. For the lossless DSL and LTE scenarios, the protocols separate into
two groups both yielding similar performance gains (see Figure 3.35). TCP+ (DSL:
-0.05TCP+

TCP , LTE: -0.08TCP+
TCP ) and TCP+BBR (DSL: -0.05TCP+BBR

TCP , LTE: -0.09TCP+BBR
TCP )

perform almost indistinguishable but against TCP, there is a noticeable improvement
visible throughout all metrics. Similarly, QUIC (DSL: -0.09QUIC

TCP+, LTE: -0.14QUIC
TCP+)

and QUIC+BBR (DSL: -0.09QUIC+BBR
TCP+BBR , LTE: -0.13QUIC+BBR

TCP+BBR ) perform equally but are
still quite a bit faster than the two tuned TCP variants. For these two networks, the
CC choice does not make a significant difference, which is likely due to the small
queue. Stock TCP indeed lags behind all other protocols showing that stock TCP
should not be used to compare against QUIC here. QUIC decreases the average
SI by -131.3msQUIC

TCP (DSL) and -344.9msQUIC
TCP (LTE), but still also against TCP+ by

-87.1msQUIC
TCP+ (DSL) and -215.9msQUIC

TCP+ (LTE).

In a second step, we take a look at the ANOVA test results focussing on DSL (LTE
yields equivalent results). When comparing the runs of TCP+ and QUIC in DSL
with PLT as the metric with each other, 30 of the 38 websites yield a significant
improvement with QUIC. For the remaining eight websites, none was significantly
faster than TCP+. For SI, even 32 websites are faster, and only six show no significant
difference. Similar results can be seen when comparing QUIC+BBR with TCP+BBR
this way. For TCP+ and TCP in the same scenario with PLT as the metric, 25
websites are faster with TCP+, for 12 websites, there is no significant difference,



3.2. Deploying a New Internet Transport – QUIC 117

-.6 -.3 0 .3
.

0.00

0.25

0.50

0.75

1.00

CD
F

-.6 -.3 0 .3
.

-.6 -.3 0 .3
.

-.6 -.3 0 .3
.Performance Gain

(a) AMSS Network

-.6 -.3 0 .3
.

0.00

0.25

0.50

0.75

1.00

CD
F

-.6 -.3 0 .3
.

-.6 -.3 0 .3
.

-.6 -.3 0 .3
.Performance Gain

(b) DA2GC Network

QUIC

QUIC+BBR

TCP

TCP+

TCP+BBR

Figure 3.36 In-Flight WiFi network performance. CDF of the performance gain over all
websites with TCP as reference protocol. If the performance gain is < 0 (left side of plot) then
the compared protocol is faster than TCP.

and only one website was significantly slower. Again when comparing TCP+BBR
with TCP+ and similarly QUIC+BBR with QUIC for DSL and LTE throughout
all metrics, we find for the majority of the websites no difference. These results
line up with the results shown in Figure 3.35. Moreover, the steep incline of the
CDFs for QUIC and TCP+ indicate that the website size or structure seems to have
little influence on the achievable gain. Only looking at SI and VC85, we see a small
percentage of measurements where QUIC has a significantly higher gain.

In-Flight WiFi. For the AMSS and DA2GC networks, the overall picture (see
Figure 3.36) is quite similar — meaning QUIC as well as QUIC+BBR, are usually
faster than TCP+ (AMSS: -0.36QUIC

TCP+, DA2GC: -0.14QUIC
TCP+) and TCP+BBR (AMSS:

-0.18QUIC+BBR
TCP+BBR , DA2GC: -0.10QUIC+BBR

TCP+BBR ). Still, there are some crucial differences. For
the AMSS link with the highest loss rate (6%), TCP+BBR operates much better
than TCP+ (-0.26TCP+BBR

TCP+ ). Since BBR does not use loss as a congestion signal,
it increases its rate regardless of this random loss. Thus, in this case, the choice
in CC has a more significant impact on the performance than the protocol choice
itself. At the time of the FVC, TCP+BBR is already -2866.2ms (avg.) quicker than
TCP+, but with each later metric, the gap widens so that at PLT, TCP+BBR
can keep up the pace even against QUIC and is 11395.4ms (0.21×) quicker. This
overtaking highlights that TCP with BBR needs some time to catch up and thus
affects the FVC much more than the later PLT. For the QUIC protocols, the picture
is similar. At first, QUIC and QUIC+BBR are similarly fast and mostly better than
TCP+BBR. However, as the loading process commences QUIC+BBR outperforms
QUIC slightly, e.g., -1828.3msQUIC+BBR

QUIC better SI. QUIC with CUBIC, nevertheless,
is reasonably fast being still a legit option to use. The shape of the performance
gain CDFs of QUIC+BBR and TCP+BBR are very similar, especially for PLT,
highlighting the influence of the CC once again. We believe that QUIC with CUBIC
is still competitive due to QUIC’s ability to circumvent head-of-line blocking and its



118 3. Deployable Transport Optimizations

Figure 3.37 Screenshot during the loading process of the nytimes.com website. Left TCP
right QUIC. QUIC in comparison delays a top banner leading to bad scores in visual metrics
compared to the final website.

large selective ACK (SACK) ranges. For the AMSS network, QUIC reduces the SI
by -8364.8msQUIC

TCP+ (avg.) compared to TCP+ and by -2091.5msQUIC+BBR
TCP+BBR when taking

both BBR protocols into account.

The last network, DA2GC, also has a high loss rate (3.3%) but much lower bandwidth.
In this scenario, we observe no significant differences for most websites among all
TCP configurations, even with the ANOVA test. We also see that in a small fraction
of our measurements stock TCP outperforms QUIC and the tuned TCP variants.
Nevertheless, again the QUIC variants are generally significantly faster with a higher
performance gain at the FVC (e.g., -0.14QUIC

TCP+) that persists towards the PLT (e.g.,
-0.16QUIC

TCP+). The choice of the CC algorithm does not seem to have a significant impact
here likely due to the low bandwidth. Only for PLT, we find QUIC with CUBIC
to be slightly superior over QUIC with BBR. There is not a single website where
QUIC+BBR yields significantly faster performance. The SI decreases with QUIC by
-2632.5msQUIC

TCP+ vs. TCP+ and by -1372.5msQUIC+BBR
TCP+BBR for BBR.

Metrics Discussion. Some of the websites exhibit miserable performance regarding
the visual metrics VC85 and SI. We observe this behavior especially for the DA2GC
network with performance gains of up to +1.0 compared to stock TCP (not shown,
plots cropped for readability). The reason for these outliers is that the protocol
choice has such a substantial impact on some websites that their resources load in
different orders resulting in very distinct rendering sequences.

Figure 3.37 shows such a scenario exemplary for the nytimes.com website in the
DA2GC network. Here TCP reaches VC85 after ∼48 s whereas QUIC needs ∼124 s
even though the PLT for QUIC (∼141 s) is much faster than for TCP (∼170 s).
For TCP the upper part of the website loads comparably early such that the lower
elements are already rendered at their final positions. In contrast to that, QUIC
manages to receive the lower contents first. Later, when the top banner completes
loading, it shifts the whole website down. Therefore, VC85 fails to express this setting
due to the shift. Similarly, SI is affected since it integrates over visual completeness
over time. Thus, it critically depends on the website, the browser’s loading order,
and a user’s preference for how a website should load to know which metric to use.

Protocol Design Impact. Within our testbed, any TCP configuration needs
to fulfill two complete RTTs before the actual HTTP request can be sent out to



3.2. Deploying a New Internet Transport – QUIC 119

Net Website Metric [ms] [RTT]

DSL gnu.org FVC 0.5 0.020
DSL wikipedia.org FVC -8.2 -0.341
DSL gnu.org PLT 1.6 0.066
DSL wikipedia.org PLT -3.1 -0.128
LTE gnu.org FVC 0.6 0.008
LTE wikipedia.org FVC -40 -0.538
LTE gnu.org PLT -30 -0.412
LTE wikipedia.org PLT -13 -0.175
AMSS gnu.org FVC -196 -0.258
AMSS wikipedia.org FVC -412 -0.542
AMSS gnu.org PLT -1100 -1.447
AMSS wikipedia.org PLT -529 -0.696
DA2GC gnu.org FVC -130 -0.497
DA2GC wikipedia.org FVC -1384 -5.283
DA2GC gnu.org PLT 39 0.150
DA2GC wikipedia.org PLT -1005 -3.834
AMSS gnu.org FVC -404 -0.532
AMSS wikipedia.org FVC -143 -0.189
AMSS gnu.org PLT -477 -0.628
AMSS wikipedia.org PLT 451 0.593

Table 3.12 Difference between the means over the 31 runs of QUIC and TCP+ when subtracting
one RTT. Values < 0 denote that QUIC was faster. The lower AMSS table compares QUIC+BBR
and TCP+BBR.

the server — TCP handshake plus TLS setup. In contrast, gQUIC requires only
one RTT to do so — the first CHLO gets rejected by the server since the server
certificates are unknown to the client. We are interested in whether this one RTT
difference can explain the remaining performance gap between QUIC and TCP+.
However, the complex interactions with multiple servers complicate an analysis
since these connections are interleaved; simply subtracting one RTT is not possible.
We, therefore, take a look at two websites served only via a single IP address (see
Figure 3.34): wikipedia.org and gnu.org. We subtract one RTT from the FVC, as
the earliest metric and one RTT from the PLT as the latest completing metric.
Table 3.12 shows the results in the different network settings for TCP+ and QUIC
and additionally for AMSS using the BBR variants of both.

For DSL and LTE, the corrected difference is below one RTT, and there are even
three cases where TCP+ is slightly faster now. For AMSS in all cases with CUBIC
as the CC, QUIC is faster but only to a maximum of 1.4× RTT. Since CC has a
huge impact within this network, we also consider BBR here. Overall in AMSS
with BBR, the difference is also below of one RTT, and for wikipedia.org and PLT
even TCP+BBR is faster. Instead with DA2GC, the outcome is clearly for QUIC
for the wikipedia.org website. Table 3.12 nicely shows that QUIC’s RTT-reducing
design clearly improves the performance. Even though, TCP Fast Open and TLS



120 3. Deployable Transport Optimizations

1.3 early-data would close the gap, especially Fast Open remains challenging to
deploy. Furthermore, having no head-of-line (HoL) blocking could still be a reason
why, in the majority of the cases, QUIC is still slightly faster, especially when the
networks are lossy. We expect further improvements when using 0-RTT connection
establishment with QUIC.
Takeaway. Our technical evaluation showed that tuning TCP parameters has a
tremendous impact on the results for performance comparisons which can not be ne-
glected when comparing TCP and QUIC. Still, in many settings, QUIC’s performance
is superior, but the gap narrows. Moreover, we find that QUIC’s higher performance
is caused mostly due to its superior design during the connection establishment. We
assume that besides the RTT-reducing design, features like no head-of-line blocking
increase QUIC’s performance, especially in lossy networks. In those lossy networks,
we also find that the choice of the CC algorithm has a much more significant impact
than the protocol itself.
Still, even though the technical metrics were chosen to reflect human perception, it
is unclear how well they really match actual human perception as this has not been
explored for QUIC yet.

3.2.6.4 QUIC vs. TCP: According to User Perception

We complement our technical evaluation of QUIC using two user studies. Even
though we found that QUIC outperforms TCP and even a tuned TCP in many
setting when we compare human-centered metrics, this cannot answer whether or
not these differences are actually above any perceptual threshold. The key focus of
our studies is thus to evaluate the effect of protocol performance on user perception.
Study 1 (A/B): Do Users Notice? We begin by performing a just noticeable
difference test to identify if users notice a protocol switch. The study design involves
a pairwise comparison where two recordings of the loading processes of the same
website with different protocol configurations but the same network setting are
shown side-by-side (rendered into a single video) to participants (see Figure 3.38a).
This pairwise comparison allows us to detect even subtle differences in the loading
processes. After watching the video, the participants are asked to answer if the left
or right video was the faster one or if they cannot decide. We furthermore ask them
to rate their confidence in their choice.
Study 2 (Rating): Do Users Care? While the first study informs us if protocol
switches lead to perceivable differences, it does not tell how users rate the perceived
quality of the loading process. We answer this aspect in a second study, in which we
only present one video (see Figure 3.38b) to let participants rate i) their satisfaction
with the loading speed and ii) the general quality of the loading process. Both
ratings are obtained on a seven-point linear scale [ITU03] ranging from extremely
bad over bad, poor, fair, good, excellent to ideal, mapped to values from 10 to 70 with
equidistance selectable by participants with a granularity of 1. To set a context for
assessing speed perception, we ask the participants to consider being in a particular
environment for this study: imaging being i) at work, ii) in their free time, or iii) on
a plane.



3.2. Deploying a New Internet Transport – QUIC 121

(a) A/B study with video and questions. (b) Rating study with video and
questions.

Figure 3.38 Example screenshots of the two user studies. Note that usually the questions are
hidden and pop up one after the other.

We implemented the user studies using TheFragebogen [GOR+19] and host it on our
own infrastructure. Each study begins with a tutorial that explains the purpose and
the procedure of the study. By informing the participants on the study goals and its
procedure, it also aims at reducing noise in the responses.

Pilot Study. We tested our study in a pilot study before releasing it. It involves
volunteers (friends and colleagues) testing our system to see if people that are
unfamiliar with the study can perform it. The results of the pilot study are not used
for evaluation, and participants did not participate in both the pilot and the later
study to limit bias by training effects. The main feedback was that people were
overwhelmed when the videos start without a tutorial up front, which we added.
Secondly, we also rendered a Web browser window around each video (also shown in
the figures) as we got the feedback that otherwise, people were unsure about the
bounds of each website.

Performing the User Studies

We utilize three different subject groups for our user study.

Lab Study. First, we perform a controlled lab study with both the rating and the
A/B study (the beginning is randomized), where we can monitor and supervise the
study. Since the lab supervisor monitors the user behavior during the lab study (e.g.,
to check that participants properly conduct the test, i.e., actually watching the videos
and not clicking randomly on the scales), it serves as our control data to evaluate
the other two uncontrolled crowd-sourced groups. As this control group is rather
small, we only consider five domains (wikipedia.org, gov.uk, etsy.com, demorgen.be,
nytimes.com), which are diverse in website size such that the overall duration for
each participant is roughly 10min. This constraint leads us to show 28 videos for the
A/B study and 11 in the work, 11 in the free time and only five, due to the increased
video length, in the plane environment for the rate study.



122 3. Deployable Transport Optimizations

Crowdsourcing Studies. We employ crowdsourcing to enlist a more extensive
number of participants. As a second group, we recruit paid Microworkers [Mic19]
participants. We follow the platform’s guidance and offer 0.75USD for a study
between 10min and 15min length and allow a single user to only participate in each
study once. After a Microworker (µWorker) completed the study, she can redeem
her payout using a code that the study displays at the end. We show 26 videos in
the A/B study and again 27 (11 work, 11 free time, and five plane) in the rating
study. Third, we advertise our studies on social media to recruit regular Internet
users. Since we expect unwillingness to perform a lengthy study, we show only 14
videos in the A/B and 15 videos (six work, six free time, three plane) in the rating
study.

Conformance Filtering. While the controlled lab study helps us in judging the
quality of the crowd-sourced results, we take extensive measures to ensure valid
results since we suspect that at least on the Microworker platform people will cheat
the system to solve the study quickly. To this end, we implement seven rules that
are used to filter invalid results:

• R1: A video in the study has not been played.

• R2: A video has stalled.

• R3: There is a focus loss event (e.g., website not the active tab or window not
in the foreground) for longer than 10 s during the study.

• R4: A vote was placed before the FVC.

• R5: A study took longer than 25min, or a question took longer than 2min.

• R6: A randomly placed control video was answered wrong. In the A/B study,
we embed significantly delayed variants of the left or right video or have the
same video on both sides25. In the rating study, we embed a very quickly
rendering website and a very slow one; we expect the rating to be at least ten
points apart.

• R7: A control question was answered wrong. Every fifth video includes an
additional question that asks for the color of the browser frame, which is still
visible while answering the question (see, e.g., Figure 3.38b having a green
browser frame). Each video is assigned a random color from red, green, and
blue; we chose the exact colors to be colorblind safe.

Table 3.13 summarizes the participation and how many results we removed due to
each of the filters. Since we allow each µWorker to only participate once26 in each
study, and we suspect Internet users not to repeat the studies, these numbers should
be close to the true number of individuals participating. Focus loss (R3) and voting
before the FVC (R4) filtered the most results.

25Since even in the lab study people claimed to see a difference, we allowed left or right as a valid
answer if the confidence was low.

26We cannot filters users with multiple µWorker accounts.



3.2. Deploying a New Internet Transport – QUIC 123

- R1 R2 R3 R4 R5 R6 R7

Lab A/B - - - - - - - 35
Rating - - - - - - - 35

µWorker A/B 487 471 441 355 268 268 239 233
Rating 1563 1494 1321 1034 733 723 661 614

Internet A/B 218 217 210 196 171 170 159 155
Rating 209 204 194 172 152 151 140 138

Table 3.13 Participation in our studies and results after each filter rule, final participations are
underlined.

Ethical Considerations. Our study design follows standard guidelines for conduct-
ing crowdsourcing QoE studies [HKH+14]. Each participation (in the lab, from the
Internet or as paid workers) takes place voluntarily. For the Microworker platform,
we follow the platform’s guidelines for payment. We chose not to pay lab participants
to allow participation without monetary pressure. The user studies clearly state
which data we are gathering, and only after completion of the study, this data is
uploaded securely to our servers. Regarding the stimulus, the content in all videos
does not show any sensitive material, e.g., violence, abuse, or other questionable
content. In case of difficulties or errors, we are reachable via email on the study
website and directly via the Microworker platform.

Study Agreement

We first compare our controlled lab study against both crowd-sourced studies. For the
A/B study, on average, lab participants took 17.69 s, µWorker 14.46 s, and Internet
user 15.59 s per video. The rating study took a little more time, lab participants
took 21.44 s, µWorker 17.71 s, and Internet users 19.23 s per video. We found lab
participants replay videos more often, especially in the A/B study. Regardless of
group, faster networks resulted in more replays, which might already indicate that
it is harder to spot differences. Regarding demographics, 76% to 79% were male.
Within the Internet and the Lab group, the majority was younger than 24 years, for
the µWorkers two-thirds were between the age of 25 to 44 years.

Figure 3.39 shows the agreement of all three groups in the rating study across all
conditions on the x-axis (conditions in the rating study are single video and video
pairs in the A/B study). The lab, as well as the µWorker data, is normally distributed.
Thus, we show the mean and the 99% confidence interval (shared area) of the votes.
We find that the µWorkers seem to fall mostly within the confidence intervals of the
lab study, and hence, we believe that these votes are legit. In contrast, for Internet
votes, we are unable to estimate the distribution and thus show the median of the
votes. As is visible from the figure, the Internet group deviates most from the other
two, and the number of votes that we were able to collect is lower. Consequently, we
exclude it from further discussions, highlighting the challenge when trying to collect
voluntary user data while setting a high standard on compliance with basic rules.



124 3. Deployable Transport Optimizations

conditions
extremely

bad

bad

poor

fair

good

excellent

ideal

vo
te

Lab (mean+99%)
µWorker (mean+99%)
Internet (median)

Figure 3.39 Rating study votes over all lab-tested conditions (ordered by mean vote of the
lab participants). We show the 99% confidence interval. Internet values are not normally
distributed, and thus, we show the median.

For the A/B study, in general, the agreement follows a similar scheme (not shown),
but outliers look more severe due to the 3-point-scale (left, right, no diff.). We
manually inspect the significant outliers in both studies, and we found that the
websites are structurally very different. Figure 3.38a shows such a case, after loading
the actual content, a welcome banner pops up. Participants in the lab study made
their decision after the banner loaded (see left video) while people in the crowd-
sourced data seem to vote earlier according to when the actual website content is
shown, and those decisions often do not agree across different protocol versions.

Do User Notice a Difference?

To answer the questions if users actually notice a difference between the different
protocol variants, we look at the A/B study and compare their votes. Figure 3.40
shows the share of votes for preferring a specific protocol variant in the four different
network settings across all websites. The colors denote different pairs of protocols
under comparison, the hatches signal preference for one or the other. Furthermore,
we display the average replay count as vertical lines for each group of comparisons. So,
e.g., in the DSL setting, slightly over 25% prefer TCP+, over 60% see no difference,
less than 10% prefer TCP, and on average, people replayed the video roughly 1.4
times.

In general, we observe that the agreement for observing a difference rises when the
networks become slower. For example, in the DSL setting, for all but the QUIC vs.
TCP comparison (red), most participants do not see a difference. The comparably
high average replay count expresses the difficulty of spotting a difference in the
DSL network. Still, in general, more people experience the protocol variant quicker
that is supposed to be faster. Lowering the bandwidth towards the LTE setting,
the majority of participants now clearly vote the supposedly better variant (this
confidence is also backed by the lower replay counts). In the slower networks, there
are slight differences. For DA2GC, TCP is now favored in contrast to our tuned



3.2. Deploying a New Internet Transport – QUIC 125

DSL LTE DA2GC AMSS0.00

0.25

0.50

0.75

1.00

Sh
ar
e
of

vo
te
s

TCP+ vs. TCP
TCP+
No Diff.
TCP

QUIC vs. TCP
QUIC
No Diff.
TCP

QUIC vs. TCP+
QUIC
No Diff.
TCP+

QUIC+BBR vs. TCP+BBR
QUIC+BBR
No Diff.
TCP+BBR

0.0

0.4

0.8

1.2

1.6

Av
g.

re
pl
ay

co
un

t

Avg. replay count

Figure 3.40 A/B study mean votes for each protocol combination depending on the network
configuration.

variant (TCP+), we always found more retransmissions for TCP+ (on avg. ×1.5
but up to ×4.8) which may be explained by the comparably high initial congestion
window leading to early losses. In contrast, QUIC seems to not suffer from the same
problems (even though similarly configured to TCP+) as our participants experience
it faster, we suspect that QUIC’s large SACK ranges enable it to progress further
and that the independent stream processing allows earlier renderings of the page.
Looking at the AMSS network, the observation from DA2GC is now again reverted
for TCP vs. TCP+; the increased bandwidth reassures our earlier assumption. For
the other protocol variants, the picture from DA2GC is now even stronger with
even more votes towards the supposedly faster variants. Again, the higher random
loss-rate in this network backs our previous impression.

Takeaway. In general, people do see a difference and indeed perceive QUIC as the
faster protocol over TCP and even over a tuned TCP variant. However, in networks
with high bandwidths, perceiving a difference seems to be more challenging.

Do Users Even Care?

We continue to answer the second question, whether users care, or more specifically,
we want to investigate if users perceive the already uncovered speedups as actually
increasing the performance or if they cannot tell in isolation. To this end, we look
at the results of the rating study, which we overview in Figure 3.41. In general,
we observe that the work and free time scenario are rated similarly with a slight
tendency towards better scores in the free time setting for DSL. In contrast is the
plane setting (only having videos using the emulated in-flight networks) that shows
only poor results.

When looking at the results within a network setting, we see only little variance
between the different protocols, and the confidence intervals mostly overlap. When
we test the different distributions for significance (using a significance level of 99%
and an ANOVA test), we do not find any significant protocol/network configuration



126 3. Deployable Transport Optimizations

DSL LTE
extremely

bad

bad

poor

fair

good

excellent

ideal
M
ea
n
Vo

te
At Work

DSL LTE

Free Time

DA2GC AMSS

On a plane

TCP TCP+ TCP+BBR QUIC QUIC+BBR

Figure 3.41 Rating study votes per protocol choice in the different settings. Error bars denote
99% confidence intervals.

that the users rate better. When we lower the confidence level to 90%, three settings
are significantly different. First, in the LTE free time setting, QUIC+BBR is rated
statistically more satisfying than TCP+BBR. BBR again makes the difference in the
plane environment and the AMSS network. In the same setting, also QUIC without
BBR is generally rated faster than TCP+. Thus, in general, there is little difference
between the protocol variants. We now take a look at the specific websites where
changes matter.

Where it Makes a Difference. In the DSL setting, eight websites show significant
differences. Four of them rate QUIC faster than TCP, one faster than TCP+,
and three rate QUIC+BBR faster than TCP+BBR. Spotify.com shows the largest
difference with BBR. The website is small, but the browser has to contract many
hosts. Still, we find small and also large websites that profit from QUIC.

In the LTE setting, only five pages show a significant difference. Our participants
favor TCP+ over TCP once, otherwise QUIC over TCP+ (twice) and TCP (once).
When using BBR, QUIC is favored once over TCP+. Regardless of CC, QUIC is
roughly rated 10 points better, i.e., a whole quality level. Again, the websites show
a wide variety of sizes and contacted hosts.

For DA2GC, we again find only five websites with a significant difference. Apache.org,
a relatively small website in terms of size and resources, is preferred when delivered
via QUIC in contrast to TCP and TCP+. When using BBR, google.com, gov.uk,
and nature.com are perceived faster using QUIC. Lastly, w3.org is rated over 15
points faster when using QUIC in contrast to TCP+.

For AMSS, we find three pages. Wordpress.com is favored in the QUIC variant over
both TCP variants, a website with few resources, small in size, and less than ten
contacted hosts. Gravatar.com on TCP is liked less. Apache.org is favored when
BBR is used.

Correlation to Technical Metrics. We next investigate which technical metrics
(FVC, SI, VC85, LVC, and PLT) best reflect our participants’ ratings. To do so, we



3.2. Deploying a New Internet Transport – QUIC 127

DS
L

LT
E
DA
2G
C
AM

SS

TCP

FVC

SI

VC85

LVC

PLT

-0.56 -0.74 -0.82 -0.90

-0.66 -0.71 -0.87 -0.89

-0.49 -0.51 -0.85 -0.90

-0.51 -0.53 -0.73 -0.42

-0.61 -0.53 -0.46 -0.16

DS
L

LT
E
DA
2G
C
AM

SS

TCP+

-0.62 -0.75 -0.84 -0.86

-0.57 -0.79 -0.85 -0.80

-0.30 -0.56 -0.71 -0.69

-0.33 -0.69 -0.82 -0.19

-0.41 -0.61 -0.51 0.05

DS
L

LT
E
DA
2G
C
AM

SS

QUIC

-0.62 -0.71 -0.89 -0.85

-0.64 -0.73 -0.91 -0.84

-0.42 -0.47 -0.85 -0.73

-0.38 -0.54 -0.76 -0.46

-0.37 -0.57 -0.51 -0.01

DS
L

LT
E
DA
2G
C
AM

SS

TCP+BBR

-0.44 -0.75 -0.80 -0.89

-0.62 -0.80 -0.89 -0.86

-0.45 -0.57 -0.84 -0.80

-0.57 -0.55 -0.75 -0.59

-0.57 -0.50 -0.41 -0.56

DS
L

LT
E
DA
2G
C
AM

SS

QUIC+BBR

-0.45 -0.61 -0.91 -0.89

-0.54 -0.72 -0.91 -0.90

-0.41 -0.53 -0.78 -0.81

-0.39 -0.63 -0.66 -0.67

-0.47 -0.63 -0.44 -0.48

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

Figure 3.42 Pearson’s correlation coefficient heatmap for different technical metrics to the user
ratings in the different settings. High negative values (-1.0) are desired and mean that technical
metric and user rating correlate perfectly. Largest correlation are in bold. For DSL/LTE, we
chose the votes from free time setting.

calculate the Pearson’s correlation coefficient of the votes compared to the technical
metrics by first calculating the mean vote for each website and combining it with the
technical metric. We chose Pearson’s (e.g., over Spearman) because we are interested
to see how well the linearity of the metric reflects the users’ choices. Thus, we would
assume a high negative coefficient when high vote scores are correlated with low
metric scores (i.e., a quick loading) and vice versa.

Figure 3.42 shows a heatmap for the different correlation coefficients in the different
network settings subject to the different protocols. As the figure shows, in general,
SI shows the largest correlation even though we find that in speedy networks such as
DSL, the correlation goes down and for slower networks, it goes up. However, this is
not limited to SI but also holds for the other metrics, which seems to be in line with
earlier findings that showed larger confidence in these networks. Opposing SI, we
find PLT to have the worst correlation to our users’ ratings, thus reinforcing related
works.

Takeaway. In general, our participants did not really care which protocol was chosen
when given no direct comparison even though in some cases, QUIC showed a small
tendency to be preferred. Furthermore, we found that the Speed Index shows the
highest correlation with our participants’ votes.

3.2.7 Summary and Discussion

In this contribution, we have performed the first broad assessment of QUIC in IPv4
and various traffic traces and analyzed its potential to speed up the Web. That is,
we study both the available infrastructure in terms of the number of gQUIC and
iQUIC-capable IP addresses and domains and their traffic share at three vantage
points. By probing the entire IPv4 address space, we find a growing gQUIC-enabled



128 3. Deployable Transport Optimizations

infrastructure that is driven by Akamai and Google. While the infrastructure of
iQUIC is tiny in comparison, we find that many new players have joined such as
Facebook, Microsoft, or Cloudflare that further push QUIC. Still, we mainly find
large Internet giants that experiment with QUIC. Driven by the fears of network
operators that see QUIC as an end to passive measurability of the transport, we have
analyzed and compared QUIC traffic shares from three vantage points, a campus
uplink, an IXP, and an ISP. We have further extended our analysis to cover the
evolution of QUIC in the ISP with 13 additional traces and find that QUIC traffic is
growing and that Google already pushes more than half of its traffic via QUIC.

Further, we find traffic peaks of up to 20.0% in our sampled data demonstrating that
QUIC has already transformed the Internet and has become a reality that operators
have to face. Interestingly, this heavy push it not backed by QUIC’s promise to
rapidly speed up the Web. While our performance measurements showed that QUIC
is often the faster protocol when looking at technical metrics, these wins diminish
as users do not clearly perceive it as the faster protocol, especially when bringing
TCP up to speed. Our studies further showed that CC has often a much more
significant impact, but there are still instances where QUIC’s advanced design also
convinces real users, particularly when the networks are error-prone. Thus, it seems
that QUIC may see clear advantages in countries where the network infrastructure
is often based on wireless links such as in some developing countries. Still, in light of
its current standardization, its foundation for HTTP/3 and the existence of multiple
implementations by different vendors foreshadows an even larger QUIC-operated
Internet once standardization finishes and QUIC is available as a default for browsers
as well as Web server software.

This dominance demonstrates that Internet giants whose service is used by billions
of people, and that control both client and server, have the power to transform the
Internet without the consent of the networks that are involved. However, this remains
a polarized topic: It takes Internet giants such as Google to develop and test a protocol
such as QUIC on a large scale to be eligible to be picked up in standardization and to
gain so much traction as we have witnessed in our measurements. This requirement
to champion the protocol is especially apparent since most of QUIC’s features have
been around and were available in many preceding protocols, yet, none of these
have made it to the Internet at large or seen deployment beyond academia. On the
other hand, it is at the Internet giants’ discretion to open up these developments
and enable others to profit from their work, a business decision that should not be
taken for granted and shows the blind spot in how Internet protocols can become
a large-scale success. Luckily, Internet giants such as Google have done this in the
past and their dedication to bringing their developments to the IETF for broader
discussion, improvement, and reiteration currently enable an Internet-wide use of
these protocols.

Still, we have also seen that these companies often work outside of recommended
practice (as already highlighted in the previous contribution, see Section 3.1) and
QUIC’s realization in user space paves the way towards a rapidly evolving transport
that can be updated as easily and as frequently as any application without requiring
system reboots. Our measurements have already shown the rapid development of



3.2. Deploying a New Internet Transport – QUIC 129

QUIC and that new versions appear frequently. In light of these findings, we expect a
highly dynamic future Internet transport landscape, and we especially point towards
CC as a critical feature of each transport protocol. Our performance analyses already
showed that in many cases, CC has a much more severe impact than the transport
itself, and with QUIC, CC is now realized in user space. While this enables to modify
CC easily, it is known that such modifications can quickly lead to unfairness as
already witnessed for QUIC by Kakhki et al. [KJC+17]. The authors found that,
at the time, QUIC’s CC was unfair towards a single TCP connection, even though
both were using CUBIC CC. It turns out that Google parameterized QUIC such
that it emulated multiple TCP connections27 to be competitive to a browser opening
multiple TCP connections.

Our next contribution thus explores this largely neglected property of Internet
transports, i.e., their usage and fairness in the Internet, outside of standardized and
controlled lab experiments that will likely become more versatile in the future.

27A Google employee noted during a paper discussion at the ANRW 2019 that gQUIC’s CUBIC
implementation still emulates two New Reno flows. Video available at: https://youtu.be/XNLi6
KDYquU?t=3650

https://youtu.be/XNLi6KDYquU?t=3650
https://youtu.be/XNLi6KDYquU?t=3650


130 3. Deployable Transport Optimizations

3.3 Fairness in an Anarchic System – Congestion Con-
trol

The Internet has grown way beyond its original purpose of being a research network
(see Section 2.1). Today, thousands of ASes connect and exchange data. The
fundamental principles governing this data exchange are well established since decades
and defined in the IETF’s RFCs. To this end, the current best-effort Internet relies
on CC to i) not collapse the network, and to ii) achieve fairness for flows competing
for bandwidth at a bottleneck. For TCP, [RFC5681] requires the implementation of
slow start, congestion avoidance, fast retransmit, and fast recovery (generally known
as TCP Reno, see Section 2.3.3.1). Other algorithms improve on specific aspects of
Reno, e.g., to enable higher performance over large BDP networks. Usually, when a
new or modified CC algorithm is proposed, it is rated in terms of TCP fairness when
competing with Reno or CUBIC as Linux’s default CC algorithm. In 2005, Medina
et al. [MAF05] showed that most Internet flows halve their cwnd on loss and are
thus TCP conform, leading to an expected flow-rate fairness [RFC5290].
Since then, the Internet landscape has drastically changed, end-users use the In-
ternet with increasing access speeds [Aka16], and content such as video is causing
a substantial fraction of Internet traffic [TGD+18, EGR+11]. These increasing de-
mands have led to a logical centralization of the content-serving Internet, where a
few big players serve the majority of the content [CSA+18, LIM+10]. In our first
contribution (see Section 3.1), we have shown that CDNs specialize in serving such
content by tuning their TCP stacks beyond RFC-recommended values in hopes for
higher performance and user satisfaction. Fundamentally, such observations raise
the question of fairness, and in fact, from an economic standpoint being unfair to
a competing CP might be advantageous (e.g., by being able to deliver data with
more than a fair bandwidth share). While identifying a CP’s CC algorithm (e.g.,
via [YLX+11, SRH+19]) helps in understanding its principal behavior or deployment,
these works do not take into account the actual parameterization of the algorithms
such as they are used in operation which has the potential of drastically changing
the fairness. Moreover, transport protocol evolution with QUIC has the potential to
further lower the hurdle for modification in the future, given its realization in user
space for flexible customization (see Section 3.2).
In light of these historical changes, this contribution investigates the behavior and
interaction of Internet giants and specifically large CPs. Thereby, we shine a light on
current practices and evaluate the question of whether actual Internet traffic adheres
to the conventional understanding of fairness (see Section 2.3.3 for an extended
discussion on fairness). To this end, we devise a methodology that enables us to
compare testbed results with actual Internet traffic. Specifically, this contribution
extends the state-of-the-art by:

• Presenting a testbed methodology using RTT-fairness to study actual TCP
traffic by major CPs to account for a broad set of TCP optimizations used in
practice.

• Comparing the fairness properties of testbed hosts to actual traffic by six major
CPs subject to different bandwidth, RTT, queue sizes, and queueing disciplines



3.3. Fairness in an Anarchic System – Congestion Control 131

in a home-user setting. We find that achieving a fair bandwidth share largely
depends on the competing CC algorithms (CUBIC vs. BBR) and the involved
network conditions.

• Finding that real Internet traffic has the potential of being unfair today
but that individuals can reclaim control over how Internet giants use CC by
deploying active queue management (AQMs) that guarantee fair and performant
bandwidth allocations.

Structure. We introduce flow-rate fairness and related works in Section 3.3.1.
We then introduce our testbed methodology and its validation in Section 3.3.2.
Section 3.3.3 discusses the results of our fairness study before we conclude this
contribution and this chapter.

3.3.1 Background and Related Work

One of the fundamental challenges in the Internet is the decentralized resource
allocation of bandwidth (see Section 2.3.3 for a broader introduction to CC). However,
TCP’s initial design only prevented overloading single end-points and did not consider
the possibility that the network itself could become overloaded and collapse upon
this congestion. As centralized algorithms are not deployable on the Internet,
decentralized CC was soon added to TCP’s design. However, the highly distributed
nature of the Internet quickly showed that there are scenarios where the early
CC often yields less than optimal performance, which has led to a plethora of
research for evolved and optimized algorithms. With the introduction of ever more
algorithms, questions about their interaction arose, challenging how these algorithms
share the available bandwidth. Research has hence also considered these aspects by
investigating fairness of CC. Well-studied fairness measures are the intra-protocol
flow-rate fairness, i.e., how well do two instances of the same algorithm share the
available bandwidth, the RTT-fairness, i.e., what happens if the flows have different
RTTs, and the inter-protocol fairness, where one investigates two instances of two
different algorithms.

Intra-Protocol and RTT-Fairness. For CUBIC, research has commonly found
decent intra-protocol fairness and an inverse-proportional RTT-fairness, meaning
that instances with smaller RTTs get a larger share of the overall bandwidth (see
Section 2.3.3 for more details). These findings have been confirmed for a broad set
of different network characteristics, ranging from small (10Mbit/s, e.g., [LSM07])
to large bottleneck bandwidths (10Gbit/s, e.g., [XKC+14]) or short (16ms, e.g.,
[HRX08, MBB08]) to long (324ms, e.g., [HRX08, MBB08]) RTTs.

For BBR, less research exists, and the available studies partly disagree on the
properties of BBR. This is especially true for intra-protocol fairness, Cardwell et
al. [CCG+16a] claim a high degree of fairness across the board, while Hock et
al. [HBZ17] identify scenarios where the fairness is significantly impaired. Regarding
RTT-fairness, it is commonly found that BBR has a proportional RTT-fairness
property, i.e., a flow with a larger RTT gets a larger share of the available band-
width [CCG+16a, MJW+17, SJS+18]. Hock et al. [HBZ17] generally confirm the



132 3. Deployable Transport Optimizations

findings but by investigating two different bottleneck queue sizes, they find that in
scenarios with a smaller queue size (0.8× BDP) flows with a smaller RTT have a
slight advantage, while in large buffer scenarios (8×BDP) the inverse is true and
flows with larger RTTs have a significant advantage.

Inter-Protocol Fairness. While the intra-protocol and RTT-fairness of CC are
essential for a massive scale-out of the algorithms, the inter-protocol fairness property
shines a light on the co-existing use of different CC algorithms in the Internet.
Unfortunately, several groups of researchers have found that BBR and CUBIC
do not cooperate well, as CUBIC flows dominate BBR flows in scenarios with
larger buffers (generally above 1×BDP) while the opposite is true for small buffer
scenarios [CCG+16a, HBZ17, SJS+18].

Even though many studies investigate how specific algorithms affect each other,
research misses an analysis which algorithms are genuinely used in the Internet.
This attestation becomes even more challenging when considering QUIC, which
hides the transport headers from a passive observer, a challenge that is actively
researched [SRH+19]. Moreover, many studies neglect the parameterization and
tuning potential of these algorithms that, e.g., Internet giants use in practice (see
Section 3.1). We address this lack by exploring if actual Internet traffic of Internet
giants — which carry the bulk of today’s Internet traffic — still adheres to the
conventional understanding of TCP fairness.

3.3.2 Methodology

CC research traditionally involves simulation or testbed studies, which give researchers
complete control over the investigated scenarios. While this is desirable for con-
trolled experiments, the involved abstractions and assumptions do not allow to
cover real-world settings completely. For example, the employed algorithms and
their parameterization in real-world systems are typically unknown. To study CC
fairness in practice, we, therefore, contact real-world Internet systems with a testbed
setup. This perspective enables us to still control some parameters (e.g., bottleneck
bandwidth and delay) while studying the CC algorithms as run by real systems.
This way, we can study if Internet traffic by CPs still adheres to the conventional
understanding of TCP flow-rate fairness.

3.3.2.1 Home User (Residential Access) Scenarios

The fundamental design choice of our study is to investigate fairness from the
perspective of an end-user accessing the Internet through a home router. Even
though peering links have been identified as possible points of congestion [DCG+18],
it is still widely believed that access links form the bottlenecks and thus congestion
happens at the network edges, more specifically at the end-user’s access link (in the
downlink direction towards the user) [BCL09]. We model this scenario in the form of
a simple dumbbell topology that is the foundation of our testbed, which we illustrate
in Figure 3.43. The user — represented by the client — is connected to the testbed



3.3. Fairness in an Anarchic System – Congestion Control 133

Testbed2

Testbed1

CP1

Switch

CP2

a

b

c

BottleneckClient

Figure 3.43 Testbed topology with testbed and online components. Scenario a (testbed-only),
Scenario b (testbed & Internet), Scenario c (Internet-only).

network via a dedicated machine serving as a configurable bottleneck (via Linux’s
TC subsystem). In general, the client can request traffic from all kinds of sources,
from within the testbed and from Internet sources. For our study, we focus on three
distinct scenarios.
In Scenario a (testbed only), we investigate the out-of-box performance of CC by
simultaneously requesting traffic from two testbed machines. This scenario, above
all, establishes a baseline and identifies potential influencing factors on the overall
interaction of CC. Building upon this baseline, Scenario b (testbed & Internet)
then replaces one of the two testbed-flows with a flow originating from the Internet.
Thus, we compare how the Internet flows interact with the out-of-box CC algorithms.
Finally, Scenario c (Internet-only) considers the case where both flows originate
from the Internet to investigate how and whether their interactions differ from the
previous scenarios.
The common goal of all three scenarios is to judge the bandwidth sharing behavior
of different CC algorithms in different network settings for which we consider four
network characteristics. The bottleneck bandwidth and the overall RTT, as a result,
give upper bounds (in terms of available data rate) and lower bounds (in terms of
responsiveness) on the overall performance, while the bottleneck queue, characterized
by its queue size and queuing discipline, introduces jitter, and loss.

3.3.2.2 Testbed Setup

Our testbed’s core consists of one machine representing the end-user and hence serves
as the client throughout the scenarios. Another machine which represents the user’s
access link and hence the overall bottleneck. The latter is then used to model all
connection-specific properties like delay or bandwidth. For the scenarios where we
create flows from within our network, we deploy one machine for each flow that is
involved and configure server-side parameters like the deployed CC algorithm on
them. All machines within the testbed use a Linux 4.13 kernel and are interconnected
via Gigabit Ethernet to ensure that the physical links never become a bottleneck.



134 3. Deployable Transport Optimizations

Limiting Bandwidth. Most configurations, like rate-limiting, are done on the
bottleneck’s egress queues. Here, we configure the bandwidth and queue size using
a token bucket filter with a burst size of a single frame while using different queue
management techniques (see Section 2.3.4 for a broader discussion of queuing me-
chanics). Even though Internet access links are often asymmetrical, we disregard
this fact as we are not interested in investigating reverse-path congestion and use
the same bandwidth in both directions.

Ensuring RTT-Fairness. To reason about the principal question of this contri-
bution, i.e., about the bandwidth sharing properties of Internet flows, we employ
the RTT-fairness property which states that two flows should share the bandwidth
equally if they have the same RTT. This equality, in turn, means that we only
consider those cases where the different flows have the same RTT. Consequently, we
use fairness synonymously for RTT-fairness.

To add delay to our testbed, we use TC to perform ingress packet processing at our
bottleneck. There, we redirect traffic to an intermediate queue disc enabling us to
use NetEm to add a delay before we release the packet for forwarding to the actual
egress queue. We do not configure any artificial jitter using NetEm as this causes
packet reordering; the additional delay and jitter are thus only caused by the egress
queue’s size and the way the flows fill the queue. To have symmetric delays, we add
half of the configured delay to each ingress of the bottleneck. While care needs to be
taken in sizing the NetEm queue to not cause artificial packet loss, this approach
has the advantage that the end-host stacks are not involved in the delay which is
known to interfere badly with CC when Linux detects queuing pressure (TCP small
queues) [Car17]. Further, in Scenario b and Scenario c , we even have no control
over all end-hosts. To ensure that we can investigate RTT-fairness, we set different
delays for each flow to harmonize their RTTs. To this end, we measure the minimum
RTT through our testbed (using TCP pings) when not using any artificial delays for
each flow. We then use each flow’s min. RTT to configure delays such that all flows
experience the same artificial min. RTT.

Limitations. Our testbed has several limitations that need consideration. We must
ensure that our traffic shaper is the actual bottleneck of the path from the CP to
our client. Since we do not have full control over all involved entities, we can only
configure bandwidths that are sane, given our interconnection. Our testbed uses
Gigabit Ethernet, and our Institute then connects via 10Gbit/s to our University’s
backbone, which in turn connects to the German research network (DFN) via
40Gbit/s which then peers at DE-CIX with all CPs investigated in this study. Thus,
shaping traffic for typical end-user access links should render the bottleneck to our
traffic shaper. Further, we need to artificially bump up the RTTs at least to the
highest min. RTT measured. For us, the CPs typically show RTTs around 5ms to
10ms, which enables us to investigate a wide range of RTTs.

Additionally, to ensure repeatability and independence, we take several precautions
to avoid undesired side-effects. First, to investigate the interaction of CC, the cwnd
must be the genuinely limiting factor, which is why we advertise an initial flow-control
rwnd of 200 segments. In the same way, we ensure that send and receive buffers
are large enough to utilize the available bandwidth fully and do not introduce an



3.3. Fairness in an Anarchic System – Congestion Control 135

Setting Parameter Space
Bandwidth 50Mbit/s, 10Mbit/s
RTT 50ms, 100ms
Buffer sizes 0.5×BDP, 2×BDP
Queueing discipline drop-tail, CoDel, FQ-CoDel

Table 3.14 Study parameter space.

undesired new bottleneck. Finally, we clear all TCP caches after each measurement
to ensure that cached metrics such as slow start threshold (ssthresh) do not affect
future measurements (testbed only).

3.3.2.3 Parameter Space

Selecting reasonable parameters for our testbed is challenging. We must adhere to
the testbed’s limitations while seeking to replicate a reasonable end-user environment.
Table 3.14 summarizes the parameter space which we discuss next.
Bandwidth. To ensure that the bottleneck link is within our testbed, we have to set
the bottleneck link bandwidth accordingly. To identify the bandwidth provided by
the individual CPs, we performed a larger number of bandwidth tests to determine
which data rates are reliably offered by the different CPs. We have found the lowest
data rates to be around 60Mbit/s. Adding a safety margin, we choose 50Mbit/s as
our upper data rate limit which according to Akamai [Aka16] is representative for
mid-sized access links. Further, we choose 10Mbit/s as a lower bound to represent a
low-end connection.
RTTs. We choose 50ms as the lower bound for the min. RTT and 100ms as a
representative for higher latencies, even though usually we expect typical CPs to
have much lower RTTs to their customers. However, these increased RTTs make it
possible to reduce the relative error when we pad up the RTTs to ensure RTT-fairness
between connections.
Buffer Sizes. For the bottleneck buffer, we experiment with different queue sizes
since we know of no study that investigates typical last-mile buffer sizes. While the
potential for overly large buffers (bufferbloat) is known [GN12], less than 1% of the
end-user flows were observed to experience RTT variations larger than 1 s by a major
CDN [HPC+14]28. Therefore, we choose one overly large buffer in the order of 2×BDP
and, inspired by research advocating new buffer sizing rules (

√
num_flows [AKM04]

and logwin_size [EGG+06]), one smaller buffer size of 0.5×BDP which, for our
investigated bandwidths and delays, yields queue sizes between both proposed sizing
rules (see Section 2.3.4.1 for an in-depth discussion on buffer sizing).
AQM. In addition to these parameters, we also change the queuing discipline
between a regular drop-tail queue and controlled delay (CoDel) [NJ12]/FQ-CoDel to
investigate the impact of AQMs on fairness (see Section 2.3.4.2 for a discussion on
AQMs and an explanation of CoDel and FQ).

28Even though we regard values far below 1 s as already bloated.



136 3. Deployable Transport Optimizations

3.3.2.4 Fairness Metric

We rate the fairness by capturing the traffic that the client receives for each flow. To
this end, the client requests a first flow from one machine, and after 5 s, a second flow
from another machine. Both flows then continue to transmit data for another 40 s
before shutting down. Of the overall 45 s, we investigate 35 s starting 5 s after the
second flow starts its transmission. While this methodology is above all intended to
focus on the long-term fairness between the two flows, we also examine whether it is
vital which flow is started first by including experiments with a flipped starting order.
We repeat each measurement 30 times to investigate the stability of our results.

To rate the fairness between both flows, we look at the ratio of transmitted bytes
(over the timespan of the shorter flow) and define our fairness measure as,

fness(a, b) =


1− bytes(a)

bytes(b) if bytes(b) ≥ bytes(a)

−1 + bytes(b)
bytes(a) if bytes(a) > bytes(b)

Intuitively, fness(A,B) maps the fairness behavior of the two flows into the range of
[-1, 1] with zero indicating absolute fairness, -1 that FlowA absolutely dominates
FlowB and a value of 1 the opposite. In between, the measure depicts the ratio
of bytes actually transmitted, e.g., 0.5 indicates that FlowB transmitted twice the
bytes compared to FlowA.

3.3.2.5 Testbed Validation

To investigate if our testbed produces meaningful results, we seek to confirm known
findings about the behavior of CC with our testbed. Since related work considers a
wide range of parameter settings and different variations of dumbbell topologies, we
do not aim to exactly replicate specific results of related work, but rather general
findings that are similar throughout all works. For this, we focus on Scenario a

(testbed-only) and test whether the performance of out-of-box CC algorithms in
our pure-testbed scenario is similar to the findings of related work as presented in
Section 3.3.1, especially regarding inter- and intra-protocol fairness.

Figure 3.44 visualizes this measure for a configuration with 10Mbit/s and a min.
RTT of 50ms for BBR, CUBIC, and a CUBIC when activating pacing. We show
a scatterplot of all our measured values together with a kernel density estimate
to better visualize the location of the majority of our measured data. For each
combination of algorithms, we plot the results when FlowA starts first (yellow)
side-by-side with the switched setting when FlowB starts first (violet). For the tests
where a CC algorithm performs against itself, switching which flow starts first only
mirrors the data at the 0-axis.

Our results show expected values as all algorithms generally show a considerable
degree of fairness to themselves (intra-protocol fairness) with BBR showing a bit
of a larger variance compared to the others. When comparing the inter-protocol
fairness, we observe that BBR clearly monopolizes the bandwidth regardless of



3.3. Fairness in an Anarchic System – Congestion Control 137

A:BBR
B:BBR

A:BBR
B:CUBIC

A:BBR
B:CUBIC
paced

A:CUBIC
B:CUBIC

A:Cubic
B:Cubic
paced

A:Cubic
paced
B:Cubic
paced

Flows

1.0

0.5

0.0

−0.5

−1.0

fn
es
s(
A,
B)

QDisc=Drop-TailRTT=50ms
BW=10Mbit

Fl
ow

B
do

m
in
at
es

Fl
ow

A
do

m
in
at
es

Flow A first
Flow B first

Figure 3.44 Results from Scenario a for 10Mbit/s, 50ms and a buffer of 0.5×BDP for
different CC algorithm combinations.

which flow starts first. This observation confirms related work on BBR in low-buffer
scenarios [CCG+16a, HBZ17, SJS+18]. An additional finding is that pacing seems to
decrease fairness when competing with both paced and non-paced CUBIC flows.

While these experiments validate that our testbed yields meaningful results confirming
known findings, we now investigate Scenario b and Scenario c to study how CPs,
and thus possibly algorithms as used in the Internet, perform against our known CC
algorithms and each other.

3.3.3 Congestion Control in the Wild

We base our evaluation of TCP fairness on actual Internet traffic by six major CPs
(Akamai, Amazon, Cloudflare, Edgecast, Fastly, and Google) in two settings: i) lab vs.
CP and ii) CP vs. CP in February 2019. Studying actual Internet traffic is motivated
by the observation that CC research often neglects the complex parameterization
possibilities. In Section 3.1, we found that CDNs use different IW configurations,
and some utilize pacing. To this end, we suspect that not only the IWs might be
different, thus choose two URLs for Akamai (named AkamaiA (which used IW32
in our previous contribution) and AkamaiE (having used IW16)) mapping to these
different settings. Furthermore, Cloudflare and Google have both publicly announced
to utilize BBR. Thus, we opt to observe the performance of actual Internet traffic
originating from these six different CPs when competing against our testbed flows in
Scenario b and among themselves in Scenario c .

We obtain URLs generating big responses (the smallest being 25MB) served by each
CP by analyzing the HTTPArchive [SGM+19]. Since the responses can still be too
small to cover our 45 s measurement period, we make use of HTTP/2 multiplexing,
i.e., we request the same resource multiple times (in parallel) over the same connection
enabling us to prolong the transmission by a multiple of the original file size. The
h2load tool shipped with nghttp229 already provides this functionality.

29https://github.com/nghttp2/nghttp2

https://github.com/nghttp2/nghttp2


138 3. Deployable Transport Optimizations

AkamaiA AkamaiE Amazon Cloudflare Edgecast Fastly Google
Content Provider

1.0

0.5

0.0

−0.5

−1.0

fn
es
s(
TB

,C
P)

QDisc=Drop-Tail
QSize=0.5×BDP

Testbed CC=CUBIC
RTT=50ms
BW=10Mbit

CP
do

m
in
at
es

TB
do

m
in
at
es

Testbed (TB) first
CP first

AkamaiA AkamaiE Amazon Cloudflare Edgecast Fastly Google
Content Provider

1.0

0.5

0.0

−0.5

−1.0

fn
es
s(
TB

,C
P)

QDisc=Drop-Tail
QSize=2×BDP

Testbed CC=CUBIC
RTT=50ms
BW=10Mbit

CP
do

m
in
at
es

TB
do

m
in
at
es

Testbed (TB) first
CP first

Figure 3.45 A CUBIC flow originating from our testbed competes with the CPs for traffic
using a small buffer (top) and a large buffer (bottom).

3.3.3.1 Lab Traffic vs. Content Provider Traffic

We start by investigating Scenario b where traffic from our testbed machines, i.e.,
BBR and CUBIC flows, competes with Internet traffic and hence the algorithms
employed by our CPs.

CUBIC Small Buffer. Figure 3.45 shows the results for 10Mbit/s and a min.
RTT of 50ms when using a CUBIC flow. We again use our fairness measure to plot
the measurement results; here, results < 0 indicate a dominance for our testbed flow
while results > 0 favor the CP. As observed in the upper plot for measurements with
a small buffer of 0.5×BDP, Cloudflare and Google definitely dominate the traffic
in all instances, giving little bandwidth to our CUBIC flow (unfair setting). Apart
from these two, Amazon and Edgecast struggle against our CUBIC flow even when
their flow starts first (unfairness by our testbed flow). In contrast, Fastly — at
least when having a headstart — can achieve rough fairness. The two Akamai flows
offer a different behavior with AkamaiE showing the highest degree of fairness while
AkamaiA is similar to Cloudflare and Google in that it completely dominates our
testbed’s CUBIC flow. This observed difference in the behavior of the two Akamai
flows supports our initial guess that Akamai uses different configuration parameters.

CUBIC Large Buffer. When looking at the large buffer setting in the plot below,
we observe a different picture. Now, the Cloudflare and Google flows do not dominate
anymore, and the fairness heavily depends on which flow we initiated first. Similarly,
for Amazon, Edgecast, and Fastly, when the testbed initiates the first flow, they



3.3. Fairness in an Anarchic System – Congestion Control 139

AkamaiA AkamaiE Amazon Cloudflare Edgecast Fastly Google
Content Provider

1.0

0.5

0.0

−0.5

−1.0

fn
es
s(
TB

,C
P)

QDisc=Drop-Tail
QSize=0.5×BDP
Testbed CC=BBR

RTT=50ms
BW=10Mbit

CP
do

m
in
at
es

TB
do

m
in
at
es

Testbed (TB) first
CP first

AkamaiA AkamaiE Amazon Cloudflare Edgecast Fastly Google
Content Provider

1.0

0.5

0.0

−0.5

−1.0

fn
es
s(
TB

,C
P)

QDisc=Drop-Tail
QSize=2×BDP

Testbed CC=BBR
RTT=50ms
BW=10Mbit

CP
do

m
in
at
es

TB
do

m
in
at
es

Testbed (TB) first
CP first

Figure 3.46 A BBR flow originating from our testbed competes with the CPs for traffic using
a small buffer (top) and a large buffer (bottom).

struggle to gain enough bandwidth. In contrast, when the CP initiates the first
flow, a generally fairer distribution is achieved. For Amazon and Fastly, we observe
a bi-modal distribution of the traffic shares, one that more closely matches the
testbed-first case and another that tends to favor the CP. What is very interesting
to see is that our testbed CUBIC flows dominate both Akamai flows entirely, no
matter which flow we start first.

BBR Small Buffer. Things start to significantly differ when we configure our
testbed’s flow to utilize BBR, as shown in Figure 3.46. As can be seen in the
upper plot, showing the fairness under a small buffer setting, the testbed BBR flow
dominates the flows of Amazon, Edgecast, and Fastly. The same is true for AkamaiE,
while AkamaiA shows an unusual behavior. Parts of the experimental iterations
show the apparent dominance of the testbed flow while about half of the iterations
either show a very fair result (when the testbed flow starts first) or dominance of
the Akamai flow (when the Akamai flow starts first). The observed characteristics
appear to be stable in that the behavior seems to switch between two distinct states.
Cloudflare shows a wide range of observed fairness ratios from dominating the testbed
flow to the opposite. For Google, however, our testbed flow always clearly loses to
the CP.

BBR Large Buffer. In the large buffer scenario, the flows of most CPs show very
similar behavior in that the testbed flow dominates the competition. The effect is
most visible when the testbed flow starts first while it is slightly ameliorated when
the CP is the first flow. The degree of unfairness is thus similar across the board



140 3. Deployable Transport Optimizations

BBR@2BDP BBR@.5BDP CUBIC@2BDP CUBIC@.5BDP
QSize Retrans QSize Retrans QSize Retrans Qsize Retrans

AkamaiA 43 175 14 1244 60 22 16 80
AkamaiE 42 210 13 967 59 24 12 70
Amazon 53 468 12 836 66 30 12 31
Cloudflare 40 22 13 1319 57 40 12 166
Edgecast 53 377 12 810 64 33 12 41
Fastly 53 442 11 741 65 31 12 41
Google 40 215 15 760 55 50 14 184

Table 3.15 Average queue size (QSize) and retransmissions (Retrans) of the testbed originating
flows for the 10Mbit/s, 50ms scenario with the testbed flow starting first.

with Cloudflare being the only real exception as it achieves a balanced fairness level
when the CP flow starts first.

Retransmissions. In addition to only looking at the resulting fairness, we also
consider fundamental characteristics of the bottleneck buffer and the participating
end-hosts. In this case, we observe the queue size of the bottleneck buffer, which
we measure using an eBPF program on the bottleneck machine, and the number of
retransmissions of the testbed flow, which we also measure using an eBPF program
on the corresponding testbed machine, i.e., Testbed1 in Figure 3.43. We present these
characteristics in Table 3.15. What can be seen is that for a testbed CUBIC flow,
Cloudflare and Google cause significantly higher retransmission counts than the other
CPs. What is very interesting is that Cloudflare induces very few retransmissions
for the BBR testbed flow in the large buffer scenario but the most retransmissions
in the small buffer scenario.

Higher RTT and Higher Bandwidth. When we investigate our other settings
with higher RTTs, we observe no qualitative difference in fairness for all but AkamaiA.
AkamaiA’s bimodal fairness distribution in the 50% BDP setting shifts towards
the testbed dominating all measurements. When increasing the bandwidth, the
testbed BBR flow still dominates, but the fairness focusses for Cloudflare and Google,
especially for smaller buffer sizes; the larger buffer generally leads to a broader
distribution of the fairness. Especially, Amazon, Edgecast, and Fastly can claim
slightly more bandwidth on average. Looking at changes when using CUBIC in
the testbed, we observe no significant difference when competing against Cloudflare
and Google. For the others, we observe a slight trend towards more bandwidth for
the CPs. Again, AkamaiA stands out in the small queue setting and behaves like
AkamaiE when increasing the bandwidth. We validated AkamaiA’s behavior over
several days (repeating the same 30 measurements for the different settings) and
were able to observe the same changes consistently.

Takeaway. As indicated by our results, fairness largely depends on the available
buffer size. Generally, it seems that the CC algorithms employed by the CPs are
achieving better fairness with off-the-shelf algorithms when more buffer size is available.
However, large buffers can cause jitter and generally inflate the latency. In small
buffer settings, BBR claims nearly all bandwidth and shows a large variability in



3.3. Fairness in an Anarchic System – Congestion Control 141

fairness and performance when competing with other BBR flows causing unpredictable
performance.

While it might seem advantageous at first glance that algorithms like BBR claim
more bandwidth than, e.g., CUBIC, it could actually be bad for CPs. In the Web,
CPs often compete with third-party resources loaded on the same website. When
the CP claims all bandwidth, it may negatively affect the website loading behavior
since they could cause reduced performance for the competing flows of the other
resources. Thus, CPs should interact fair with their competitors, which is the focus
of the next part of our study, i.e., how two CP flows interact.

3.3.3.2 Content Provider vs. Content Provider

For investigating the interaction between the different CPs, we now deploy Scenario
c , where we request both flows from the CPs. The rest of the testbed configurations
remain unchanged. Figure 3.47 shows the results for AkamaiE, Amazon, and
Cloudflare flows competing against the other CPs in a scenario with 10Mbit/s, a
min. RTT of 50ms and a small (left column) or large (right column) buffer size. Due
to the similarity of the results, Amazon serves as a representative for Edgecast and
Fastly, while Cloudflare represents Google as well. Once more using our fairness
measure, results < 0 indicate a dominance of the explicitly mentioned CP while
results > 0 favor the competing CP mentioned on the x-axis.

Small Buffers. Starting with the left column, i.e., with the small buffer scenario,
we rarely observe cases where the CPs achieve a good level of fairness. Especially
Cloudflare (bottom) seems to dominate most of the other CPs with the only exception
being when it is forced to compete with Google and AkamaiA. In the former case,
Google generally dominates Cloudflare when it starts first while we observe large
range fairness results when Cloudflare is the first flow. We make the most interesting
observation for AkamaiA as the bi-modal behavior observed before is again visible
when it is started first and forced to compete with Cloudflare. Here, roughly half of
the results indicate significant domination by AkamaiA.

For the scenarios where we focus on AkamaiE (top) and Amazon (center), it is
evident that Cloudflare and Google massively dominate them. The same holds when
they compete against a first flow originating from AkamaiA, while the behavior
is much fairer when the AkamaiA flow starts later. When interacting, Amazon,
Edgecast, and Fastly show a rather high degree of fairness. When AkamaiE competes
against Edgecast and Fastly, we observe a broad range of fairness values, ranging
from medium dominance of Edgecast and Fastly to total domination of AkamaiE.
The latter, i.e., total domination of AkamaiE, is above all visible when competing
against Amazon.

Large Buffers. Things again change when we focus on the right column using a
larger buffer. Regarding Cloudflare (bottom), we observe that the strict dominance
is less profound than in the small buffer scenario, yet still favoring it. When the
Cloudflare flow starts first, there is a higher degree of fairness when competing against
Amazon, Edgecast, and Fastly, yet they struggle when Cloudflare’s flow starts first.



142 3. Deployable Transport Optimizations

Akam
aiAAmaz

on
Cloud

flareEdgec
ast FastlyGoog

le

Content Provider

1.0

0.5

0.0

−0.5

−1.0fn
es
s(
Ak

am
aiE

,C
P) QDisc=Drop-Tail

QSize=0.5×BDP

CP
do

m
in
at
es

Ak
am

ai
E

do
m
in
at
es

AkamaiE first
CP first

Akam
aiAAmaz

on
Cloud

flareEdgec
ast FastlyGoog

le

Content Provider

1.0

0.5

0.0

−0.5

−1.0fn
es
s(
Ak

am
aiE

,C
P) QDisc=Drop-Tail

QSize=2×BDP

CP
do

m
in
at
es

Ak
am

ai
E

do
m
in
at
es

AkamaiE first
CP first

Akam
aiA
Akam

aiE
Cloud

flareEdgec
ast FastlyGoog

le

Content Provider

1.0

0.5

0.0

−0.5

−1.0fn
es
s(
Am

az
on

,C
P) QDisc=Drop-Tail

QSize=0.5×BDP

CP
do

m
in
at
es

Am
az
on

do
m
in
at
es

Amazon first
CP first

Akam
aiA
Akam

aiE
Cloud

flareEdgec
ast FastlyGoog

le

Content Provider

1.0

0.5

0.0

−0.5

−1.0fn
es
s(
Am

az
on

,C
P) QDisc=Drop-Tail

QSize=2×BDP

CP
do

m
in
at
es

Am
az
on

do
m
in
at
es

Amazon first
CP first

Akam
aiA
Akam

aiEAmaz
on
Edgec

ast FastlyGoog
le

Content Provider

1.0

0.5

0.0

−0.5

−1.0fn
es
s(
Cl
ou

dfl
ar
e,C

P) QDisc=Drop-Tail
QSize=0.5×BDP

CP
do

m
in
at
es

Cl
ou

dfl
ar
e

do
m
in
at
es

Cloudflare first
CP first

Akam
aiA
Akam

aiEAmaz
on
Edgec

ast FastlyGoog
le

Content Provider

1.0

0.5

0.0

−0.5

−1.0fn
es
s(
Cl
ou

dfl
ar
e,C

P) QDisc=Drop-Tail
QSize=2×BDP

CP
do

m
in
at
es

Cl
ou

dfl
ar
e

do
m
in
at
es

Cloudflare first
CP first

Figure 3.47 AkamaiE, Amazon, and Cloudflare competing against the other CPs in the
10Mbit/s, 50ms setting. Amazon performs similar to Edgecast and Fastly, Cloudflare is similar
to Google. Left column shows 0.5×BDP, right column 2×BDP.

However, Cloudflare does not seem to cooperate well with the two Akamai flows or
Google, as it dominates them in all these scenarios.

Generally, we witness a decent amount of fairness in several scenarios involving
Amazon (center). Especially when competing against Cloudflare, Edgecast, and
Google, high fairness levels are achieved. In contrast to that, we can again see very
poor fairness for the Akamai flows if they start first, while we observe a wide range of
values when they compete against an Amazon flow starting first. When the AkamaiE
flow is the first contester (top), the other CPs dominate, yet, AkamaiE seems to be
able to claim bandwidth better when it enters as the second flow.

Takeaway. As observed earlier, larger buffers seem to enable a better level of fairness,
even though they are still far from being equal in most cases. This observation
especially holds for Cloudflare and Google, which dominate most of the other CPs in
the small buffer scenario while there are reasonable fairness values for most CPs in
the large buffer setting.



3.3. Fairness in an Anarchic System – Congestion Control 143

Even though we note a higher level of fairness for the large buffer, it comes with
the problem of larger queue sizes and hence also with increased delays. Ideally, we
would have a scenario with a smaller queue but still the high level of fairness. As
AQMs, like CoDel, are designed to keep the delay (and hence the queue) small, we
are interested in whether they can help to achieve the desired combination of small
delays and high level of fairness. Thus, we investigate the effect of AQMs on the
whole situation in the following section.

3.3.3.3 Can CoDel Improve Fairness?

AQMs inherently change the behavior of a queue which, is why they have a significant
impact on the overall performance. Generally, they have two possible forms of
feedback to which flows might respond: i) dropping packets and ii) using a marking
scheme such as explicit congestion notification (ECN). In our work, we only consider
the first case of feedback, i.e., packet drops because it requires no end-to-end support.
For this, we repeat the experiments from before but activate CoDel and its flow-
queuing variant FQ-CoDel on the intermediate bottleneck machine (see Section 2.3.4.2
for a description of CoDel and FQ). In the following, we further concentrate on the
case with a queue size of 2×BDP because CoDel’s effect on small queues is likely
to be diminishing. Hence, Figure 3.48 only shows the results for a queue size of
2×BDP in the otherwise unchanged scenarios previously used in Figure 3.47, i.e.,
for 10Mbit/s and a min. RTT of 50ms. We again choose AkamaiE, Amazon, and
Cloudflare as the showcase CPs.

CoDel. The main observation that we make is that CoDel (left) seems to achieve a
very high level of fairness when Amazon competes with Edgecast and Fastly and
when Cloudflare competes with Google. Apart from that, there are above all awfull
fairness values when other CPs are competing against Amazon or Cloudflare with
tendencies looking like the small buffered scenario with the FIFO queue.

For the AkamaiE flow, the application of CoDel comes in hand with apparent
domination of Akamai when competing against Amazon, Edgecast, and Fastly. What
is more, Akamai also dominates Cloudflare and Google when it starts first, while
there are again two regions of values when Cloudflare and Google start first; one
where Akamai dominates and one where the other two dominate. Finally, when
looking at the performance against AkamaiA, the bi-modal effect is again visible and
now for both cases. AkamaiE starting first is again characterized by a dominance of
AkamaiE half of the time and a fair behavior the other half, while this is the exact
opposite if AkamaiA starts first.

FQ-CoDel. Shifting towards the flow queuing variant (right), which is designed
to produce a fair queuing, we observe a tremendous increase in fairness. Now,
throughout all measurements, fairness is close to the equilibrium and we only observe
slight variations. When looking at AkamaiE, we see the most significant variation
relative to the others with AkamaiE slightly dominating most of the others. Looking
at Amazon, we see a slight advantage that diminishes for Edgecast and Fastly. In
the Cloudflare case, Amazon, Edgecast, and Fastly get slightly less bandwidth while
Google is very fair, and the Akamai flows again showing a slight bi-modal pattern.



144 3. Deployable Transport Optimizations

Akam
aiAAmaz

on
Cloud

flareEdgec
ast FastlyGoog

le

Content Provider

1.0

0.5

0.0

−0.5

−1.0fn
es
s(
Ak

am
aiE

,C
P) QDisc=CoDel

QSize=2×BDP

CP
do

m
in
at
es

Ak
am

ai
E

do
m
in
at
es

AkamaiE first
CP first

Akam
aiAAmaz

on
Cloud

flareEdgec
ast FastlyGoog

le

Content Provider

1.0

0.5

0.0

−0.5

−1.0fn
es
s(
Ak

am
aiE

,C
P) QDisc=FQ_CoDel

QSize=2×BDP

CP
do

m
in
at
es

Ak
am

ai
E

do
m
in
at
es

AkamaiE first
CP first

Akam
aiA
Akam

aiE
Cloud

flareEdgec
ast FastlyGoog

le

Content Provider

1.0

0.5

0.0

−0.5

−1.0fn
es
s(
Am

az
on

,C
P) QDisc=CoDel

QSize=2×BDP

CP
do

m
in
at
es

Am
az
on

do
m
in
at
es

Amazon first
CP first

Akam
aiA
Akam

aiE
Cloud

flareEdgec
ast FastlyGoog

le

Content Provider

1.0

0.5

0.0

−0.5

−1.0fn
es
s(
Am

az
on

,C
P) QDisc=FQ_CoDel

QSize=2×BDP

CP
do

m
in
at
es

Am
az
on

do
m
in
at
es

Amazon first
CP first

Akam
aiA
Akam

aiEAmaz
on
Edgec

ast FastlyGoog
le

Content Provider

1.0

0.5

0.0

−0.5

−1.0fn
es
s(
Cl
ou

dfl
ar
e,C

P) QDisc=CoDel
QSize=2×BDP

CP
do

m
in
at
es

Cl
ou

dfl
ar
e

do
m
in
at
es

Cloudflare first
CP first

Akam
aiA
Akam

aiEAmaz
on
Edgec

ast FastlyGoog
le

Content Provider

1.0

0.5

0.0

−0.5

−1.0fn
es
s(
Cl
ou

dfl
ar
e,C

P) QDisc=FQ_CoDel
QSize=2×BDP

CP
do

m
in
at
es

Cl
ou

dfl
ar
e

do
m
in
at
es

Cloudflare first
CP first

Figure 3.48 AkamaiE, Amazon, and Cloudflare competing against the other CPs in the
10Mbit/s, 50ms, 2× BDP setting using CoDel (left column) and FQ-CoDel (right column).
Amazon performs similar to Edgecast and Fastly, Cloudlfare is similar to Google.

Takeaway. Combining the findings on AQMs with our previous observations that
Amazon, Edgecast, and Fastly use a similar algorithm and that Cloudflare and Google
use BBR. We find that CoDel, above all, seems to improve the intra-protocol fairness
in large buffers. This news is terrible for the heterogeneous Internet, as scenarios
with different algorithms suffer from severe unfairness. Luckily, the flow queuing
variant enables a significant degree of fairness even in heterogeneous settings. Thus,
it seems to stand again that the technologies to enable a fair and performant Internet
are available and only need to be deployed at the bottlenecks.

3.3.4 Summary and Discussion

In this contribution, we empirically investigated the fairness of large content providers
in the Internet. With the help of our testbed, we can investigate actual Internet
traffic subject to RTT-fairness when competing under lab-controlled properties of a



3.4. Conclusion 145

bottleneck. Generally, we find there is only limited fairness in the Internet today.
Some CPs interact well with each other, while others do not. Their choice in CC
algorithm likely reflects this observation. We thus posit that increased research in
the area of CC identification is required, that not only detect the flavor of CC, e.g.,
CUBIC or Reno but further investigate their parameterization. Further, we find that
the bottleneck buffer size significantly impacts the fairness, depending on its size, it
can invert bandwidth sharing observations when shifting from small towards large.
This finding demands research to investigate actual bottleneck buffer sizes in the
Internet to then shine a light on, e.g., the impact on Web performance when content
is served from a diverse set of CPs. Still, there is a silver lining: State-of-the-art
AQMs such as FQ-CoDel put the fairness control back into the network operator’s
and possibly the end-user’s hand, however, require availability and deployment on
millions of devices.

3.4 Conclusion

In this chapter, we have focussed on the impact of Internet giants on Internet
transport. To this end, we have illuminated how the Internet has evolved and is
currently operated through three lenses.

First, we showed how TCP, as the de-facto transport of the Internet since the 1980s,
is being used today at large by investigating how IWs are configured in IPv4 and
by Internet giants. Our measurements have shown that RFC-recommended values
are on the rise at large but that Internet giants such as content delivery networks
that carry the bulk of the Internet customize this highly influential parameter. We
found instances that exceeded the current experimental recommendation by a factor
of ten, which may sound dangerous at first sight. However, our measurements
and evaluations also showed that CDNs are well aware of the effects that their
changes have, many putting safety measures such as pacing in place. Further, our
measurements even showed indications for per-network and per-service customization,
showing that these values outside of the recommended ranges are an explicitly defined
choice.

Our measurements highlight how and that evolution today is still possible in the
Internet at large with a protocol that is considered highly ossified. Within this
first contribution, we overcame several measurement challenges, such as determining
the quantities in which we must scan the Internet to derive results regularly while
reducing the footprint of our scans. We further demonstrated the ability to leverage
the distributed nature of VPNs to measure from various network locations enabling
us to investigate how residency within a particular network affects our measurements
and the results.

Second, we investigated the deployment and use of QUIC, as an alternative and
highly anticipated transport protocol that combines many improvements to TCP
while enabling an ossification-free deployment. While promising increased efficiency
through deployable transport optimizations, network operators struggle with QUIC as
QUIC hides the once passively accessible transport headers through encryption which



146 3. Deployable Transport Optimizations

challenges their TCP-dependent network management. With our measurements, we
provide the first broad analysis of QUIC in the wild by enumerating QUIC hosts
in all of IPv4 and roughly 50% of the DNS namespace and by analyzing various
traffic traces. We find that the originally proposed Google-version of QUIC was
initially mainly deployed by Google, but Akamai as a major CDN now operates
the most extensive publicly reachable gQUIC infrastructure. Similar to our first
contribution, we were able to see a significant degree in parameterization of different
gQUIC deployments which even allowed fingerprinting them. By further analyzing
the current IETF draft versions of QUIC, we found that many more players are now
involved, yet, again Internet giants such as Cloudflare or Facebook dominate the
deployment.
In contrast to this, our analysis of QUIC traffic shares at a major European IXP
and ISP showed that deployment and traffic shares are highly asymmetric and
vantage point dependent. We find that Google transports over half of its traffic
already via QUIC and in total, we observe QUIC traffic peaks of up to 20.0% at
the ISP. Surprisingly, we find little Akamai-originating QUIC traffic given their
extensive infrastructure, even though they push more traffic via QUIC at the IXP
than Google. Our findings hint at Akamai still testing QUIC on a small subset of their
customers. Given the large efforts that are put into QUIC, we were surprised that our
performance evaluations showed that QUIC is not the clear winner when it comes to
convincing actual humans. Our studies showed that QUIC excels beyond TCP when
the networks are prone to loss, but when the networks offer high bandwidth and low
latency, QUIC can only win by a small margin on paper but humans do not perceive
a difference for website delivery. Still, even though we believe that deploying QUIC
might thus not be everyone’s top priority, some of QUIC’s features are simply not
deployable in TCP at large and QUIC’s design itself offers the possibility to rapidly
evolve which shows a clear path beyond a TCP-based Internet.
Our insights highlight that QUIC already challenges operators today and the in-
frastructures that are in place for gQUIC and that are currently set into place
for iQUIC have the potential to shift significant amounts of Internet traffic from
TCP to QUIC. Further, we have witnessed a vibrant QUIC landscape with quickly
evolving versions. While most of these versions are used to test or introduce certain
features, QUIC, by-design, allows for this rapid evolution. We thus ask whether, in
the future, ossification will happen on the end-points that become stale and that
do not install software updates offering new versions or if the future Internet will
become a rugged landscape offering various QUIC versions. We found that Internet
giants such as Google that control the whole ecosystem, i.e., browser, service, and
serving infrastructure, can quickly push changes without consensus and are thus
likely not affected by end-host ossification. Less popular services that do either
not possess the same infrastructure or will not update may seem faced with radical
development cycles by Internet giants. However, our analysis also showed that today,
it takes an Internet giant such as Google or Akamai, to push such fundamental
transport changes as QUIC to make them applicable at large and to become an
Internet standard that has the potential to become an Internet reality.
Third, while pushing innovations to the IETF for standardization, our analysis on IWs
has already shown how Internet giants operate outside of these standards in a pursuit



3.4. Conclusion 147

for increased performance and hence user satisfaction. Therefore and motivated by
the increased future ease to change CC in QUIC, we investigated how the traffic of
these Internet giants still adheres to the general notion of fairness through the eyes of
a regular home user. As the Internet, by design, is a decentralized and uncontrolled
system no measures are currently put into place to monitor or enforce fairness of
the participating systems, even though it is known that (US) mobile operators do
rate-limit individual CPs [LNC+19]. We designed our measurement study to find out
if CC, as implemented by the Internet giants, conforms to lab-controlled behavior
of CC algorithms generally considered fair. To this end, we ensure RTT-fairness by
design and observe great variations of flow-rate fairness across the board. While we
find that some Internet giants generally show approximate fairness to one another,
others largely dominate testbed as well as traffic originating from their competitors.

Generally, this sounds bad at first glance. However, Internet flows have varying
durations (e.g., bulk download vs. website delivery), phases of inactivity (e.g.,
video streaming) and often depend on one another (e.g., website resources that are
subsequently discovered and fetched). Thus, claiming that one Internet giant falsely
takes resources from others away is too short-sighted, it may even be non-beneficial
to steal resources in case of a website delivery when critical third-party resources are
thus slowed down. Even though our measurements uncovered pathological unfairness,
the nature of the traffic may render this unfairness non-existent and further, research
has devised methods such as FQ-CoDel that can be applied decentralized by everyone
to reestablish a fair bandwidth allocation that guarantees low latencies for all involved
parties.

In summary, Internet giants today coin practical Internet transport. The sheer
dominance in terms of bytes and services that they deliver puts them into a powerful
position. Them flipping a switch can change how significant parts of the Internet and
especially the Web are operated. While they generally open up their innovations and
are keen to standardize them, the configurations, especially for congestion control,
are a business secret and, e.g., IWs are vastly different among the large players. Thus,
we find that Internet reality has drifted away from standardized and taught practice
and that research needs to investigate the nature of real Internet traffic regularly.

We are going to continue our view on Internet evolution by focussing on the ossification
and deprecation on the network layer and how individuals can regain control of
content routing that is currently dominated by Internet giants.



148 3. Deployable Transport Optimizations



4
Evolution in the Internet’s Core

In the previous chapter, we have observed that the ossification on the transport layer
challenges Internet evolution and that configurations alone are no more sufficient for
large Internet giants, and new protocols are set in place to overcome these hurdles.
While middleboxes challenge these end-host only changes, evolution in the Internet’s
core is even more challenging by design as all systems involved need to be updated.
Even though in the early days of the Internet such a change was still easy given the
small number of participating systems,

“ [...] after a short grace period of a few months, no network was allowed
to participate in the Internet if it did not comply with IPv4.”

— Leonard Kleinrock [Kle10]

Today, this evolutionary challenge is largely reflected in the ongoing Internet Protocol
(IP) transition from IP Version 4 (IPv4) to IP Version 6 (IPv6) that is going on
since 1998. Figure 4.1 shows the share of Google users contacting Google services
via IPv6 between September 2008 and August 2019. While this is of course only
Google’s view and does likely over-emphasize eyeball networks, it still shows that the
transition is happening but that it took roughly until 2013 to gain some traction.

While our focus is not on IPv6 in this chapter, it shows how long such a fundamental
change takes, and that evolution in the Internet’s core is a slow process. In this
chapter, we thus tackle the question of how do content owners flexibilize in light of
Internet giants and network ossification? Today, Internet giants heavily peer with
other systems to be less dependent on public infrastructure and to serve content with
low latencies. This resulting high quality of service has led to a large dependence on
them and is forcing individuals to apply their practices.

Our approach to this is thus two-fold, Section 4.1 first shines a light on network
ossification and deprecation. We do so by listening to Internet control plane feedback



150 4. Evolution in the Internet’s Core

03.A
pr 20

09

16.A
ug 2010

29.D
ec 20

11

12.M
ay 2

013

24.S
ep 2014

06.F
eb 2016

20.J
un 2017

02.N
ov 2

018

Date

0

10

20

30

Sh
ar
e

Google users using IPv6

Figure 4.1 IPv6 adoption among users using Google services, data available at [Goo19a].
Please note the visually thick appearing line is due to a heavy fluctuation caused by a weekly
pattern where Google sees more IPv6 usage on Fridays, Saturdays and Sundays.

in response to the large-scale Internet measurements from Chapter 3, thereby recycling
the measurements and lowering the footprint of Internet scanning by not having to
perform additional scans. Then, Section 4.2 analyzes how content owners practically
circumvent network ossification and the restrictions and regimentations set in place
by Internet giants. We do so by dissecting one of the largest Meta-CDN and shining
a light on their operational model, thereby documenting how content provision can
be liberated. For our measurements, we need to overcome several research challenges.

Research Challenges

• How to study Internet ossification on a large scale?
The Internet is an extensive collection of systems that interconnect and interact
with each other. Measuring its evolution at large is challenging, especially
given the large number of possible ways to test evolution and the large number
of IP addresses. Thus, our methodology should have a low footprint to be
ethical. Furthermore, this then raises the question of how (un)-evolved the
core is and whether network operators regularly update their systems to follow
standardization and current best practices.

• Meta-CDNs are highly distributed, and their customer base is un-
known.
Measuring highly distributed systems such as content delivery networks (CDNs)
is challenging from a single vantage point. It requires a global perspective
from many networks to derive the operational model of a CDN. Thus, our
methodology needs to be executable on a wide variety of platforms. Further,
companies are usually restrictive in giving out information regarding their users,
but we nevertheless want to establish who uses Meta-CDNs and for what kind
of service.



4.1. Listening into the Void – Studying Internet Core Evolution 151

4.1 Listening into the Void – Studying Internet Core
Evolution

As we have seen in the previous chapter, Internet scans are a valuable and thus
widely used approach to understand and track the evolution of the Internet. To
this end, we have already applied them to a significant extent measuring large
parts of the Domain Name System (DNS) as well as the public IPv4 address space.
We are not the only ones conducting network scans, they are applied in widely
different fields, including networking and security research: e.g., to find vulnerable
systems [DLK+14], to measure the liveness of IP addresses [BRJ+18], or to, as we
also did, measure the deployability of new protocols, features [EKT+17], or their
evolution [VSN+16]. The recent advancements in scanning methodologies enabled
probing the entire IPv4 address space for a single port within minutes or hours,
depending on the available bandwidth and configured scan rate (see tools such as
ZMap [DWH13] or MASSCAN [Gra19]). Thereby, regular scans of the entire IPv4
address space have become feasible, e.g., providing an insightful perspective into
protocol evolution (see, e.g., our QUIC measurements in Chapter 3). This line of
scan-based works has created a rich body of contributions with valuable insights into
Internet structure and evolution. These works have in common that they focus on
one particular feature or protocol as their objective to study (primary use).

To now study Internet core evolution, we argue that Internet-wide scans have a
less explored secondary use that allows studying the Internet control plane while
scanning for their primary use, e.g., to detect routing loops while primarily probing
for QUIC-capable servers. That is, we study Internet control plane responses sent
via the Internet Control Messaging Protocol (ICMP) as a response to non-ICMP
probe packets (e.g., QUIC) and show that Internet-wide scans are a hidden treasure
in that they produce a rich ICMP dataset that is currently neglected, e.g., to
uncover network problems and study Internet evolution. The exiting aspect is that
these ICMP-responses are a valuable secondary use that any Internet-wide scan
generates as a by-product. Thus, without putting additional burden on the Internet’s
infrastructure, we can study the Internet control plane (e.g., to detect routing loops)
without requiring dedicated scans (as performed a decade ago [HMM+02, XGF07]).

Our observations on the Internet’s control plane are fueled by regular ZMap scans of
the IPv4 address space for multiple Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP) ports as well as DNS-based scans of top lists and zone files
for mainly Transport Layer Security (TLS), Hypertext Transfer Protocol (HTTP)/2,
and QUIC. Most of which we have presented in Chapter 3. In this contribution,
we evaluate one full week of ICMP responses to these multi-protocol Internet-scans
covering the entire IPv4 address space and > 50% of the domain name space.

Our contributions are as follows:

• We propose to use Internet-wide scans to study the Internet control plane
via ICMP response, e.g., to detect routing loops or to study the prevalence
of misconfigurations and misuses that have been documented long ago thus
shedding light on Internet core evolution.



152 4. Evolution in the Internet’s Core

Mon Tue Wed Thu Fri Sat Sun

DNS-based
TCP/443
gQUIC/443

Alexa 1M
TCP/80
TCP/443

1% IPv4
TCP/80
TCP/443

IPv4
TCP/80

IPv4
gQUIC/443

IPv4
iQUIC/443

IPv4
TCP/443

Table 4.1 Weekly scan schedule fueling our dataset, DNS-based scans use our own resolver
infrastructure. For IPv4-wide scans, we utilize ZMap.

• Within our one week observation period, we collect ∼637.50M ICMP messages
which we make available at [Rüt18d].

• We shed light on how Internet-scans trigger ICMP responses across the Internet.
• Our data shows a plethora of misconfigured systems, e.g., sending ICMP

redirects across the Internet or producing deprecated source quench messages.
• We find many networks and hosts to be unreachable, and our scans uncover

large sets of unreachable address space due to routing loops.
• We provide a growing ICMP dataset at https://icmp.netray.io.

Structure. The next section (Section 4.1.1) starts by providing an overview of our
ICMP dataset. Following this, we dive into our dataset and dissect it (Section 4.1.2).
Driven by our findings, we inspect unreachable hosts due to routing loops and
quantify their presence in today’s Internet (Section 4.1.3). Finally, we discuss related
works (Section 4.1.4) and conclude this contribution (Section 4.1.5).

4.1.1 Scan Infrastructure & Dataset

Our scans are sourced by two different modes, on the one hand, we use the
ZMap [DWH13] port scanner on multiple machines to perform different scans within
a week, and on the other hand, we continuously probe > 50% of the DNS space.
Table 4.1 summarized our weekly scan schedule. We did not explicitly create these
scans to serve this effort; in contrast, they are used to fuel the data that we have
presented in Chapter 3 and other ongoing research efforts.

These scans typically involve scanning TCP/80 for TCP initial congestion window
(IW) configurations (from Section 3.1) or TCP Fast Open support (see Chapter 3).
Further, we investigate TCP/443 for HTTP/2-support [ZRW+17] and TLS [HHA+20].
Additionally, we scan on UDP 443 for Google QUIC (gQUIC) and Internet Engineer-
ing Task Force QUIC (iQUIC) (see Section 3.2). We drive our DNS-based scans with
the help of our own resolver infrastructure to resolve various record types for domains
listed in zone files of multiple top-level domains (TLDs) (e.g., .com, .net, .org), which
we obtain from the different registries, and we use A-records to investigate TLS,
HTTP/2, and gQUIC. All our scans, including the DNS resolutions, originate from
a dedicated subnet that otherwise does not generate any eyeball traffic. To collect
all ICMP traffic that is directed towards these hosts, we install a mirror port at

https://icmp.netray.io


4.1. Listening into the Void – Studying Internet Core Evolution 153

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Type Code Checksum

Type/Code specific fields

Figure 4.2 ICMP header structure. Type and this type’s sub type (code) determine message
contents, e.g., often packets triggering the ICMP message are quoted.

Type Count Unique IPs Unique ASes

Destination Unreachable 476.68M 170.30M 52.92K
Time Exceeded 139.53M 455.13K 18.40K
Redirect 18.12M 243.25K 2.29K
Echo Request 3.12M 10.64K 861
Source Quench 46.18K 2.65K 364
Echo Reply 6.08K 301 58
Other 1.48K 606 43
Timestamp Request 73 9 6
Parameter Problem 20 16 9
Address Mask Request 4 1 1

Table 4.2 ICMP types with their occurrence frequency in our dataset, ordered by frequency.

their uplink switch and filter it to only contain ICMP traffic that belongs to our
measurement network. Since we perform no measurements that generate ICMP
messages themselves, we exclude those sent from our host (only ping responses)
leaving us with only incoming ICMP traffic.

Dataset

We base our observations on one full week in September 2018. In this week, we re-
ceived 169GB respectively ∼637.50M ICMPv430 messages (excluding those explicitly
triggered in Section 4.1.3). ICMP messages follow the structure shown in Figure 4.2,
they are fundamentally made up of a type field and, to further specify a subtype, a
code field, and depending on their value additional information may follow.

4.1.2 Study of ICMP Responses

To begin our investigations, we first summarize the ICMP responses to our scans by
looking at the distribution of ICMP message types and their frequency of occurrence
in Table 4.2. We observe 75 different ICMP type/code combinations during our ob-
servation period with significantly different occurrence frequencies. While we mostly
receive standardized ICMP messages, we also receive some messages for which we
could not find an Request for Comments (RFC) or other documentation, summarized
as Other in Table 4.2, on which we do not further focus in this contribution. The

30Please note that we do not have a fully IPv6-capable measurement infrastructure and thus
focus on IPv4 only.



154 4. Evolution in the Internet’s Core

25.09.2018
Tue

26.09.2018
Wed

27.09.2018
Thu

28.09.2018
Fri

29.09.2018
Sat

30.09.2018
Sun

01.10.2018
Mon

Date (Localtime)

101

103

105

107
#

pe
rh

ou
r(

ro
llin

g)
EchoReply
Dest. Unreach.

SourceQuench
Redirect

EchoRequest
TimeExceeded

Other

Figure 4.3 Number of ICMP messages receiver per hour and type over the course of a week.
Note the log scale and that we used a rolling sum over 1h.

table lists the total count of these messages as well as the number of unique source IP
addresses (router/end-host IP addresses) that generated the messages and number
of autonomous systems (ASes) where the systems reside. During the week, we run
different scans, notably, on Sundays and Mondays (see Table 4.1), we do not perform
any IPv4-wide ZMap scans.

Figure 4.3 thus puts the data from Table 4.2 into a temporal context showing the
rolling sum over 1h intervals of the most occurring ICMP types. We observe that
the ICMP traffic varies over the week, e.g., echo requests are somewhat static, other
types like destination unreachable mainly follow our ZMap scan schedule.

Quoted IP Packet

Apart from the different ICMP types, many ICMP messages contain parts of the
packet that caused the creation of the messages. We further inspect these quoted
IPv4 packets within the ICMP messages. From all received ICMP messages, 99.5%
are supposed to contain IP packets (according to the RFCs), of these, only 0.07%
cannot be decoded, e.g., because there is not enough data or they are not IPv4
packets. Of the decodable packets, we find 180.25M unique source IP address/payload
length combinations, 76% are longer than 40B, i.e., enough to inspect IP and TCP
headers when the packets contain no options31, 24% are precisely 28B long, so just
enough to inspect the transport ports. Thus, when no options are present, the
chances are high that an ICMP receiver can demultiplex the ICMP messages to
the respective application process. This finding extends the work in [ML07] that
showed a prevalence of 28B responses for TCP traceroutes. Next, we focus on the
destination address field within the quoted IP header. These should correspond to
addresses which are targeted by our scanners.

Interestingly, from all ICMP messages, we find over 1.06M messages with destination
IP addresses that are in reserved address space, i.e., unallocated or private addresses

31To reduce the capture size, our packet capture caps packets at 98B allowing no further
investigation, we find 67% having this maximum capture size.



4.1. Listening into the Void – Studying Internet Core Evolution 155

Des
t. U

nrea
ch.

Port Tim
eEx

ceed
ed

TTL
Exc

eede
d

Des
t. U

nrea
ch.

Hos
t
Des

t. U
nrea

ch.

Com
mPr

ohib
ited Red

irec
t

Hos
t

Des
t. U

nrea
ch.

Net Des
t. U

nrea
ch.

Hos
tPro

hibi
ted
Ech

oRe
que

st

Cod
e: 0 Oth

er
0.0

0.2

0.4

0.6

Sh
ar
e

ZMap TCP/80 ZMap UDP/443 DNS TCP/443

Figure 4.4 ICMP messages triggered by ZMap and DNS-based scans.

(e.g., 192.168.0.0/24). Since all our scanners explicitly blacklist these IP addresses,
we thus believe that machines behind network address translations (NATs) produce
these messages. We next use the contained source addresses to understand the
relation to our measurements.

Takeaway. ICMP traffic shows a temporal correlation to measurement traffic; most
messages indicate unreachability. In our collected dataset, quoted IP packets typically
contain enough information to inspect everything up to the end of the TCP header.
Further, a substantial number of messages seems to be generated behind NATs allowing
to peek into private address spaces.

4.1.2.1 Responses to Individual Measurements

Since we perform a variety of different measurements independent of this study,
our first investigation is how different measurements affect the generation of ICMP
traffic. To this end, we compare two ZMap scans and a purely DNS-based scan. For
the ZMap scans, we focus on one that enumerates reachable TCP port 80 (HTTP)
and UDP port 443 (QUIC) hosts, for DNS, we use a scan that probes for HTTP/2
support via TCP port 443. We can unquestionably tie the ICMP messages to the
different scans via IP address and ports either from the quoted IP message or from
the IP packet itself.

Figure 4.4 shows the distribution of ICMP types and codes (top 8) that we receive
for the respective scans. As already indicated by Table 4.2, we receive a large
number of destination unreachable messages. However, depending on the scan, their
volume and share greatly vary, especially when looking at the respective code. For
example, unreachable ports are omnipresent for our UDP-based ZMap scan. In
comparison, the TCP-based ZMap scan shows only a small fraction of unreachable
ports. This finding is unsurprising as TCP should reply with an RST-packet if a port
is unreachable and does typically not generate ICMP messages. In contrast, there
is no such mechanism in UDP, even through something comparable to TCP’s RST
exists in QUIC. However, QUIC is implemented in user space, and thus, when the
kernel cannot demultiplex a packet to a socket, it must resort to issuing an ICMP
unreachable message. Looking at our DNS-based scan, we still find that more than



156 4. Evolution in the Internet’s Core

20% of the ICMP messages signal unreachability through ICMP in contrast to TCP
RSTs, something that, e.g., the default ZMap TCP-SYN scan module ignores in
contrast to its UDP counterpart. Since in all major operating systems, TCP handles
signaling closed ports, we believe that these hosts issuing ICMP replies are actively
configured either in their own firewalls (e.g., iptables) or in a dedicated firewall to
do so. We find only 16.49K IPs issuing all 1.13M ICMP port unreachable messages,
supporting our assumption that dedicated machines filter this traffic.

Looking at the other types/codes, we find that a non-negligible share of ICMP
messages indicate that hosts are not reachable via the Internet either due to time to
lives (TTLs) expiring or because we cannot reach their host or network. Apart from
this, we observe that TCP port 443 is often firewalled (Host Prohibited).

Takeaway. Depending on the protocol and port, we get different feedback from the
Internet’s control plane. Our findings indicate that, e.g., ICMP port unreachable
messages should not be ignored for TCP-based scans as is currently the case.

4.1.2.2 ICMP Echos

ICMP echo requests (Type: 8) are the typical ping to which hosts answer using an
echo reply. [RFC792] defines only a single code point, i.e., code = 0 which represents
“no code”; still, we observe some non-standard code points. Some security scanners
use non-standard code points for operating system fingerprinting, e.g., a standard
Linux will echo the requested code point in its reply. Still, pings to our measurement
infrastructure seem quite common, for code = 0, we find 10.57K unique IPs out
of 840 ASes. It seems that our scanning activities trigger systems to perform ping
measurements towards us, yet, we do not know their actual purpose. We suspect
that intrusion detection systems (IDSes) could monitor the liveness of our hosts and
thus cause the pings.

Echo Replies

Since our hosts do not perform echo requests, we were surprised to find echo replies
in our dataset. We observe different code points with different frequencies, but
overall, we find over a couple of thousand of these replies. To investigate what
causes these seemingly orphaned messages, we inspect their destinations. Since our
measurements are identifiable either by IP address or additionally by weekday, we
associate messages to measurements. We find most echo replies are with code = 3
(except for five messages), all 5.75K of these echos are destined to our DNS resolvers
and originate from only 86 IP addresses in two Chinese ASes. While many ICMP
packets contain IP quotations, echo replies typically do not. They usually mirror
data contained in the echo request, yet, we still find IP packets together with DNS
query responses that are destined to our resolver. Thus, it seems that the packets
are generated on the reverse path. However, they are not sent back to the source
(DNS server), but they are forwarded to the destination (us). Inspecting the source
IP within the IP fragments, we find IP addresses from the same two ASes, as it turns
out the 88 ICMP source IP addresses all respond to DNS queries which hints at their



4.1. Listening into the Void – Studying Internet Core Evolution 157

use as a DNS server cluster. Nonetheless, we were unable to manually trigger these
ICMP reply packets when trying to send DNS requests to these IP addresses. We
only observed that DNS requests were always answered by two separate packets from
the same IP address, however, with different DNS answers. Further, the packets
seem to stem from different IP stacks (significantly different TTLs, use of IP ID
or not, don’t fragment bit set or not). While the different stack fingerprints could
be the result of middleboxes altering the IP headers, the general pattern that we
observe hints at DNS spoofing.

4.1.2.3 Source Quench

ICMP source quench (SQ) messages (Type: 4, Code: 0) were a precursor of today’s
explicit congestion notification (ECN) mechanism, used to signal congestion at end-
hosts and routers. The original idea from [RFC792] was that a router should signal
congestion by sending SQ messages to the sources that cause the congestion. In turn,
these hosts should react, e.g., by reducing their packet rate. However, research [Fin89]
found that SQ is ineffective in, e.g., establishing fairness and the Internet Engineering
Task Force (IETF) deprecated SQ-generation in 1995 [RFC1812] and SQ-processing
in 2012 in general [RFC6633]. Major operating systems ignore SQ-messages for
TCP at least since 2005 to counter blind throughput-reduction attacks [RFC5927].
Further, [Flo94] claims that SQ is rarely used because it consumes bandwidth in
times of congestion.

In our traces, we observe 2.65K unique IP addresses located in 364 ASes issuing SQ
messages, despite the deprecation. Out of these IP addresses, 34.42% are located
in only five ASes. Moreover, our measurement infrastructure contacted 609 SQ-
generating IP addresses directly, i.e., they are the original destination of the request
causing this SQ message (according to the IPv4 header contained within the ICMP
message). Among the remaining SQ messages, we find a few messages where the
original destination and the source of the SQ messages are located in ASes of different
operators, i.e., possible transit networks. Exemplarily, we observe that IP addresses
located in AS1668 (AOL Transit Data Network) and AS7018 (AT&T) issued SQ
messages when we contacted IP addresses located in AS8452 (Telecom Egypt). As a
final step, we see that 53 destination IP addresses in our measurements trigger the
generation of SQ messages and are also contained in A-records of our DNS data that
we collect. Out of these 53 IP addresses, 22 IP addresses generated the SQ messages
themselves, i.e., no on-path intermediary caused the creation of this message.

Besides, we checked how vendors implement or handle this feature. Cisco removed
the SQ feature from their IOS system after Version 12 in the early 2000s [Cis08].
Hewlett Packard’s cluster management system (Serviceguard) generated SQ messages
due to a software bug in a read queue, which was fixed by a patch in 2010 [Hew10]. In
their router configuration manual (September 2017), Nokia also marks SQ messages
as deprecated [Nok17]. Although we cannot identify devices and their operating
system version in our measurements, we assume that some devices are not updated
to a current version or are following a configuration that enables them to generate SQ
messages. This generation is not forbidden per se, but given that ICMP SQ creation



158 4. Evolution in the Internet’s Core

was deprecated over 20 years ago, our findings highlight that removing features from
the Internet is a long term endeavor.

4.1.2.4 Redirect

ICMP redirect messages (Type: 5), are sent by gateways/routers to signal routes to
hosts. While [Gil02] finds networks which require redirect messages to be architected
sub-optimally in the first place, [RFC1812] states that a router must not generate
redirect messages unless three properties are fulfilled: i) The packet is being forwarded
out the same physical interface that it was received from, ii), the IP source address
in the packet is on the same logical IP (sub)network as the next-hop IP address, and
iii), the packet does not contain an IP source route option. Similar checks [RFC1122]
are used by receiving hosts to check the validity of the message (e.g., redirected
gateway and issuing router must be on the same network).

Since none of the 18.12M redirect messages originate from our network, the routers
generating them either violate rule ii) or some obscure address translation is in
place on their networks. In our data, we even find roughly 2.7K unique redirects to
private address space. Within our dataset, we observed 105.78K network redirects
and 18.01M host redirects. Network redirects are problematic since no netmask is
specified and it is up to the receiving router to interpret this correctly. For this
reason, [RFC1812] demands that routers must not send this type. We find that the
network redirects originate from 238 different ASes affecting nearly 19K different
destinations of which less than 20 are mapped in any of our DNS data. Still, all these
ASes thus contain questionable router configurations that are outdated at least since
1995. Similarly, we find that the more considerable fraction of host redirects originate
from 2.20K ASes that affect over 400K destinations of which we find roughly 900
mapped in our DNS data. This conjuncture suggests that a substantial number of
end-systems connect via sub-optimally architected or misconfigured networks to the
Internet.

4.1.2.5 Unreachable Hosts

Reachability is a fundamental requirement to establish any means of communication.
Given that Table 4.2 lists 476.68M destination unreachable messages, this looks
troublesome at first. However, not all unreachability means faulty behavior, e.g.,
firewalls actively protect infrastructure from unpermitted access, i.e., when iptables
rejects a packet (in contrast to dropping it) it generates an ICMP response. By
default, a port unreachable message (Type: 3, Code: 3) is produced, but a network
operator can manually specific other types. Our scans in themselves certainly trigger
a particular number of firewalls or some IDSes. In contrast, when a path is too long
and the IP TTL reaches zero, routers typically generate an ICMP TTL exceeded
message indicating that they were unable to reach the destination but this time due
to the network’s structure. Similarly, ICMP destination unreachable messages for
host unreachable (Type: 3, Code: 1) should indicate that there is currently simply



4.1. Listening into the Void – Studying Internet Core Evolution 159

Type Code Count

Destination Unreachable Port 256.72M
Time Exceeded TTL Exceeded 139.52M

Destination Unreachable

Host 107.15M
Comm Prohibited 71.70M
Host Prohibited 23.07M
Net 17.94M
Protocol 51.04K
Fragmentation Needed 26.66K
Net Prohibited 26.28K

Time Exceeded Fragament Reassembly 7.31K

Destination Unreachable

Host Unknown 336
Net TOS 25
Net Unknown 6
Source Isolated 2

Table 4.3 ICMP messages received indicating some form of unreachability with known type
and code ordered by frequency.

no path to a host, e.g., because it is not connected or the link is down. Table 4.3
summarizes the unreachability that we observe in our dataset.

As already indicated in Section 4.1.2.1, our UDP-based ZMap scans have the highest
share of port unreachable messages putting them at the top. We inspect the origin
of the messages and the actual destination that our scans targeted to see if the
end-hosts generate the messages or an intermediate firewall. It seems that 96% of
the messages are indeed generated by end-hosts or machines that can answer on
their behalf (NATs).

Host and Network

Unreachable hosts and networks codes are used to give hints that currently no path
is available and the RFCs explicitly note that this may be due to a transient state
and that such a message is no proof of unreachability. To check for transient states,
we compare the unreachable hosts on Thursday with those on Friday in our ZMap
(both UDP 443) scan and additionally with the same scan (Thursday) one week
later (captured separately from our initial dataset) and investigate if hosts become
reachable that were unreachable before or vice versa.

Figure 4.5 visualizes the change between these two days (a) and within one week (b)
for host unreachable messages. We can see that within two days, the majority of hosts
remain unreachable, a small number of hosts that were previously reachable32 become
unreachable, and similarly, previously unreachable hosts become reachable. Looking
at the changes within a full week, we observe that the total number of unreachable
hosts stays the same. However, roughly the same number of previously reachable

32With reachable we actually mean not unreachable, i.e., we do not get ICMP unreachable
messages, which must not mean that this host was reached by the scan.



160 4. Evolution in the Internet’s Core

Reachable
3.4M

Un
re
ac
ha
bl
e

24
.0
M

Un
re
ac
ha
bl
e

18
.1
M

Reachable
9.3M

(a) Thursday to Friday.

Reachable
5.3M

Un
re
ac
ha
bl
e

24
.0
M

Un
re
ac
ha
bl
e

24
.0
M

Reachable
5.3M

(b) Thursday to Thursday one week later.
Figure 4.5 Different scans (left to right of each plot) trigger different number of host unreachable
messages. (a) compares the changes within one day. (b) within one week.

hosts become unreachable and vice versa. To dig into these once unreachable and
then reachable hosts, we inspect to which AS they belong, finding that 82% of all
hosts are from the same ASes. A possible explanation might be that while our
observations seem to indicate a change, the ICMP message generation is subject
to rate-limiting [GH18]. Thus there might be routers that generated unreachable
messages on Thursday for a certain host, yet, this router could be subject to rate-
limiting on Friday for the same host or the week after leading to a false impression
of reachability and continuity. Another possibility is that some hosts are only up at
certain times of the day leading to differences in the reachability. Still, a substantial
number of hosts remain unreachable.

Time Exceeded

Similar to host unreachability, Time Exceeded messages (Type:11) indicate unreacha-
bility but due to network issues. Either the Fragment Reassembly (Code: 1) time was
exceeded, i.e., the time that IP datagrams are buffered until they can be reassembled
when IP fragmentation happens, or the TTL runs out (Code: 0), i.e., the path
length exceeds the sender-defined limit. For the former, we find some thousand
messages, but they stem from only 30 ASes, since many of our scans use small
packets, fragmentation is unlikely in the first place. However, our UDP ZMap scans
are an exception, since they roughly use 1300B per packet which is in the range of
typical [CFL18] maximum transmission units (MTUs) when fragmentation could
occur. Since the default ZMap functions to create IP packets (which we use), do
not set the don’t fragment bit, only some of our measurements trigger the 26.66K
fragmentation needed and DF set ICMP messages (see Table 4.3). However, over time,
these ICMP messages could give valuable insights into path MTU in the Internet.

TTL Exceeded messages have the second-largest occurrence (139.52M) within our
dataset. They were produced in 18.40K different ASes covering 35.5M different
destinations that our scans tried to reach of which ∼32K are again present in A-



4.1. Listening into the Void – Studying Internet Core Evolution 161

records of our DNS data and are thus unreachable. We inspect the TTL field of the
quoted IP packets that triggered the ICMP messages to see if the TTL was really
zero when the message was generated. To do so, we first generate all unique pairs
of router IP and TTL values and then count the different TTLs observed. Out of
these, 97% of the TTLs show a value of one, followed by ∼2.4% with a zero, we
expect these two, since a router should drop a TTL = 0 or, depending on the internal
pipeline, also TTL = 1, when the packet is to be forwarded. Nevertheless, we also
find larger TTLs, 2, 3, 4, 5, and 6 directly follow in frequency, yet, we also find some
instances of over 200 or even 255. The huge TTLs could hint at middleboxes or
routers rewriting the TTL when they generate the message to hide their actual hop
count. The lower numbers could be indicators for Multiprotocol Label Switching
(MPLS) networks. By default, e.g., Cisco [Cis14] and Juniper [Jun17] routers copy
the IP TTL to the MPLS TTL on ingress and also decrement the IP TTL within
the MPLS network. It is possible to separate IP TTL and MPLS TTL, and there
are heated discussions whether one should hide the MPLS network from traceroutes
or not, which has also been the subject of investigations [DLM+12]. Thus packets
expiring within an MPLS network will still trigger an ICMP TTL exceeded, however,
the quoted IP packet will have the TTL value they had at the MPLS ingress router,
thus if the ingress copies the IP TTL, a traceroute could still reason about an MPLS
network.

Since we were surprised to see this many TTL exceeded messages across all scanner
types (see Section 4.1.2.1), we checked our scanners to see which TTL they were using
to see if our setup simply has too small values. All our ZMap-based scanners initialize
the TTL field with its maximum of 255 possible hops, all scanners building on top of
the transport layer interfaces, in contrast, use the current Linux default of 64 hops
as also recommended in [RFC1700]. Given that we are at least on the recommended
hop count, this leaves us with three possibilities, i) the current recommendation of
64 is too low to reach these hosts, ii) there are middleboxes modifying the TTL to a
much lower value, or, iii) there are routing loops on the path to these hosts. After
shortly summarizing our findings, we continue by exploring the latter.

4.1.2.6 Summary

As the previous sections have shown, our Internet-wide scans produce an insightful
secondary dataset of ICMP responses. Driven by these messages, we identified a
potential DNS spoofer, found that long deprecated source quench messages are still
generated in today’s Internet and that ICMP redirects are sent across different admin-
istrative domains pointing to several outdated and misconfigured networks. Without
crafting a dedicated dataset, our scans enable us to study Internet reachability and
evolution, and we believe that longitudinal studies offer a way to deal with the
challenge of ICMP rate-limiting.



162 4. Evolution in the Internet’s Core

4.1.3 Routing Loops

Routing loops are an undesirable control plane misconfiguration, rendering destination
networks unreachable and challenging a link’s load [XGF05]. In essence, IP’s TTL
protects the Internet from indefinitely looping packets and thus ICMP TTL messages
inform the sender that a router dropped a packet after exceeding the allowed number of
router hops (TTL). While the potential for routing loops is known, only a few studies
investigated their presence a decade ago [HMM+02, XGF07], current information on
the presence and prevalence is missing. Therefore, we study routing loops based on
ICMP TTL exceeded messages triggered by our scans. We further argue that one can
frequently investigate the presence of routing loops as a by-product of Internet-wide
scans that one regularly conduct for different purposes.

4.1.3.1 Methodology: Detecting Loops

Loops are not the only source of ICMP TTL exceeded messages. Also, overly long
paths or middleboxes can trigger these messages. To investigate whether or not
an actual loop is present, we perform traceroutes for the original destinations
(given in the quoted IP packet) of the ICMP TTL exceeded messages. Since our
traceroutes are subject to ICMP rate-limiting, especially when packets start to loop,
we customize traceroute. Our traceroute slows down its sending rate when detecting
an already seen IP address (loop indicator). Otherwise, it follows the design of
Paris traceroute [ACO+06] reusing flow identifiers for each hop to trigger the same
forwarding behavior in equal-cost multi-path (ECMP)-like load balancers.

Since the traceroutes can still be noisy due to hosts that do not generate ICMP
messages at all or are still subject to rate-limiting, notably when also other traffic
flows into a loop, we put strict demands on our loop. For each hop on the path that
does not generate a reply, we assign a new unique label; we label all others directly
by the answering IP address. From this list of labels, we create a directed graph
connecting each label-induced node to its successor and, on this path, we compute
all elementary cycles using [Joh75]. On an elementary cycle, no node appears twice
except that the first and last node are the same. Then, on each of these possible
cycles, we inspect the node with the highest degree, and if this node’s degree is
greater than five33, we mark this traceroute as having a loop. This process will
yield loops as long as at least one router in the loop generated ICMP TTL exceeded
messages, which we found to work reasonably well when traceroute pauses the packet
generation for at least 500ms when observing an already seen IP address. Thus in a
loop of two routers, we will send each router a packet roughly every second.

4.1.3.2 Routing Loops in the Wild

We seed our traceroutes by ICMP TTL exceeded messages generated from our
Internet-wide scans34. Since we get way too many TTL exceeded messages to

33This is basically a precaution against bad load balancers traded against the required TTL.
34Our dataset excludes TTL exceeded messages generated by these traceroutes.



4.1. Listening into the Void – Studying Internet Core Evolution 163

traceroute them all without generating substantial rate-limiting, we restrict us to a
single traceroute for each unique /24 subnet within 30-minute intervals. Thus for
two TTL exceeded messages for a destination from the same /24 subnet, we only
perform a single traceroute if the messages arrive within 30 minutes.

For our assessment of routing loops, we investigate TTL exceeded messages in the
last week of August 2018. To avoid rate-limiting, we also limit our traceroutes that
we perform in parallel; generating all traceroutes for this single week took us until
the end of September 2018. While this skews our data, it enables us to reason about
the persistence of these loops since, in principle, we could schedule a rescan of the
same /24 every 30 minutes (subject to an ICMP TTL exceeded message appearing
from one of our regular scans). In total, we performed ∼27M traceroutes to ∼612K
different /24 subnets from 28K ASes, of these, 439K subnets from 19.8K ASes are
unreachable due to a loop. We further inspect how many loops are present and if
loops are only within a single AS or whether loops cross AS borders and are thus
potentially on a peering link. To do so, we count the number of distinct loops and
ASes involved in the loops and find 167K different loops in 13.9K ASes. Of these
loops, 136K have IPs for all routers involved in the loop, thus allowing an in-depth
inspection. Looking at the ASes involved, we find that 13% (17.7K) already cover
all different ASes paths involved (i.e., we replaced each IP address by the respective
AS), of these 4.8K cross AS boundaries. The top three ASes involved in the loops
are AS171 (Cogent) a Tier-1, AS9498 (BHARTI Airtel Ltd.), an Indian Internet
service provider (ISP), and AS3549 (Level 3), again a Tier-1.

Persistence

To investigate the persistence, we restrict our view to traceroutes, which were
performed two weeks after our Internet-wide scans that triggered the initial ICMP
TTL exceeded message. In contrast to our previous observation, loops from roughly
150 ASes disappear, yet, we continue to find 4.6K loops crossing AS borders, in total,
still rendering 404K subnets unreachable. Thus, most loops seem to persist and are
not resolved.

Loops at our Upstream ISP

Within our data, we also found loops in the AS of our upstream ISP. We contacted
the ISP about our findings which they were able to confirm. Since many of the loops
are outside of their administrative domain even though they manage the address
space, they were still able to give us more details on a loop that they were able
to fix. For one loop, they found that the first router had a static route for our
tested destination towards its next hop, yet, the next-hop had no specific forwarding
information for this destination and thus used its default gateway, which however
was the previous router with the static route thus causing the loop.

Takeaway. Routing loops seem to persist in large parts of the Internet, challenging
the question if the address space cut off by the loops is in use after all or if other
routes would be taken from different vantage points. We believe, when exploited,



164 4. Evolution in the Internet’s Core

routing loops have considerable potential for causing congestion and thus persistent
monitoring seeded by large-scale Internet measurements that informs operators could
be a long-term attempt to reduce routing loops.

4.1.4 Related Work

Our work relates to approaches analyzing ICMP traffic and its generation in general,
as well as approaches that focus on particular studies built upon ICMP, e.g., path/
topology discovery and routing loops. In the following, we discuss similarities and
differences to our work, but we remark that the body of works building on top of
ICMP is far larger but conceptually differ in that they do not analyze ICMP as a
by-product.

Bano et al. [BRJ+18] also use ZMap and capture all (cross-layer) responses to probe
traffic to infer IP address liveness but run specific measurements to generate this
traffic. We believe that our dataset could be used to perform a similar analysis.
Malone and Luckie [ML07] analyze the correctness of ICMP quotations. They base
their analysis on a dataset obtained via tcptraceroute in 2005, targeting around
84K Web servers. While most of the reported messages are of type ICMP time
exceeded, they also find around 100 source quench messages, which were already
deprecated then. As we have shown, by looking at the ICMP responses to Internet-
wide scans, we can update their findings regularly without having to craft a dedicated
dataset. Guo and Heidemann [GH18] present FADER, an approach to detect the
presence of ICMP rate-limiting in measurement traces. While we did not focus on
rate-limiting, we found indicators for rate-limiting. We believe that longitudinal
studies seeded by Internet-wide scans can, in the long run, help to overcome limited
visibility due to rate-limiting.

In 2002, Hengartner et al. [HMM+02] have characterized and analyzed the presence
of routing loops in a Tier-1 ISP backbone trace. Xia et al. [XGF05, XGF07] have
further tracerouted over 9M IP addresses to find routing loops in 2005. Transient
routing loops have also been subject to investigation [WQG+09], and they are well
studied [SMD03, FB07]. Lone et al. [LLK+17] investigate routing loops in CAIDA
data to study source address validation but do not focus on their prevalence in
the Internet, further, in contrast to using the CAIDA dataset that actively runs
traceroutes against all /24, we utilize indications from ongoing measurement data to
investigate loops. While these works show that routing loops are a known problematic
misconfiguration, their presence in the Internet has not been analyzed for over ten
years. By recycling Internet-wide scans, we can seed such investigations and enable
persistent monitoring of this phenomenon, showing that routing loops are still a
problem today.

4.1.5 Summary and Discussion

In this contribution, we focussed on Internet core evolution. To reason about its
current state, we recycled measurements from Chapter 3 and studied ICMP messages



4.1. Listening into the Void – Studying Internet Core Evolution 165

generated in response to these scans. Our analyses of different ICMP responses led
us to many misconfigured routers, e.g., sending ICMP redirects across the Internet,
or outdated systems, e.g., generating long-deprecated source quench messages. While
we find that there are a large number of systems that are outdated or misconfigured,
only a small fraction of these systems seems to be on the path to DNS-mapped
destinations. For the Web and many publicly used services that seems to hint that
there are no major misconfigurations on the path, yet in the Internet’s core at large,
we still find these systems.

Further, our analysis showed a broad and nuanced degree of unreachability in the
Internet. More specifically, our scans hint at the existence of routing loops, which
we found to persist in large parts of the Internet and even at our upstream ISP.
Routing loops are a significant misconfiguration of the control plane and can challenge
the availability of a link when malicious actors send packets towards such a loop.
We hope that these ICMP by-products are analyzed by more researchers when
performing large-scale measurements and that the regular nature of these scans will
enable persistent monitoring of the Internet’s control plane and that, especially when
brought to the attention of operators, misconfigurations can be fixed. To this end,
we make our dataset publicly available at [Rüt18d].

Our findings highlight that the Internet core evolves slowly and misconfigurations and
outdated behavior are still to be expected. This slow evolution makes it especially
difficult for individuals participating in the Internet to rely on the existence of new
technology, or to be able to change operation at all. In light of this logjam, we next
investigate how content owners can regain control over content routing while utilizing
state-of-the-art technologies such as CDNs.



166 4. Evolution in the Internet’s Core

4.2 Individualism in the Age of Giants – Indirection
through Meta-CDNs

CDNs have become a critical key component of the Web [AGH+12, CFK+15]. Their
ongoing quest to serve Web content from nearby servers has evolved the Internet
structure through a hierarchical flatting [LIM+10] that promises lower latencies, while
their distributed nature pledges high availability. These benefits led to a wide adoption
of CDNs for Web content delivery manifesting in high traffic shares: for example,
more than half of the traffic of a North American [GD11] or a European [PFA+10]
ISP can be attributed to few CDNs only. In that regard, our measurements from
Section 3.2 have shown that Akamai delivers a substantial amount of traffic at our
European ISP. Despite these benefits, customers of a single CDN are bound to its
cost model and performance figures. To this end, e.g., Netflix initially delivered its
video data using commercial CDNs, but given their growth, the costs of using CDNs
exceeded the costs of operating their own CDN which they announced in 2012 [Net12].
Today, Netflix is an Internet giant, but also back then had an enormous impact, yet,
not every content owner is as powerful as Netflix and can design, implement, and
operate its own CDN. Limitations that individual content owners can overcome by
multihoming content on different CDNs and subsequently serving it from the CDN
that currently offers better performance or lowest costs.

To better utilize content-multihoming, Meta-CDNs [FPL+13] enable content providers
(CPs) to realize custom and dynamic routing policies to direct traffic to the different
CDNs hosting their content; a concept also known as CDN-Selector [XCW17] and
that is related to auction-based CDN brokers [MBM+16, MBR+17]. The Meta-CDN
performs request routing according to custom routing logic defined by CPs (i.e., the
customers of a Meta-CDN and CDNs). A broad range of factors can inform this
routing logic, including CDN cost models or measured CDN performance. CPs
can thus utilize a Meta-CDN to reduce costs or to optimize performance, e.g., by
implementing custom logic to direct traffic to a CDN that currently offers better
performance or lower cost (e.g., at certain geographic regions or times). Hence, a
Meta-CDN frees CPs of the strict operational models of a single CDN and helps
them to overcome limitations set in place by networks in certain geographical regions.
Since the routing approach employed by the Meta-CDN customers is unknown to the
involved CDNs, directed traffic and, thus, generated revenue get harder to predict.
In particular, since decisions can be based on active performance measurements by
the Meta-CDN, a (single) delivery of lousy performance by the probed CDN can
result in rerouting traffic to a competing CDN and thus losing revenue. Thus, while
Meta-CDNs can offer cost and performance benefits to CPs, they also challenge CDN
business models. Concerning Internet-users, performance-based routing decisions can
yield better Internet performance and benefit end-users, while cost-based decisions
can have other effects (as for any server selection approach run by CDNs). While
the concept is known and related work covering service-specific implementations,
e.g., Conviva’s streaming platform [Con19, DSA+11, MBM+16], exists, the empirical
understanding of a generic Meta-CDN and its operation in practice is still limited.
We posit that this understanding is necessary.



4.2. Individualism in the Age of Giants – Indirection through Meta-CDNs 167

In this contribution, we thus shed light on the Meta-CDN operation by dissecting the
Cedexis Meta-CDN as a prominent example that is used by major Internet companies
such as Microsoft (Windows Update and parts of the Xbox Live Network), Air France,
and LinkedIn [Cit18]. Given its current adoption, understanding its functionality
and its usage by customers provides a first step towards understanding currently
unknown implications of Meta-CDNs on Internet operation. We thus investigate the
infrastructure and services powering this Meta-CDN and provide insights about its
operation in practice. We analyze for what kind of services, e.g., media, application
programming interface (API) backends, or bulk data transfers, customers utilize
Cedexis and how different CDNs are employed. We further investigate how the
infrastructure deployed by Cedexis impacts the overall request latency performance
in a PlanetLab and Ripe Atlas measurement. Specifically, our contributions are as
follows:

• We characterize Cedexis, as a representative generic Meta-CDN, present its op-
eration principles, and further analyze and classify its customer base. Moreover,
we illustrate which CDNs are used by the customers.

• We utilize globally distributed vantage points, i.e., Ripe Atlas, PlanetLab, open
DNS resolvers, and a small deployment of probes behind home user Digital
Subscriber Line (DSL) connections, to obtain a global view on Cedexis. Based
on these measurements, we analyze the deployed infrastructure of Cedexis
and are further able to investigate if the selection process varies based on the
location. Besides, we find cases of suboptimal routing in terms of latency.

Structure. The remainder of this section is structured as follow, Section 4.2.1
regards related works before we dig deeper into the architecture and technical
implementation of the Cedexis Meta-CDN in Section 4.2.2. Section 4.2.3 shines a
light on how Cedexis’ customers utilize the service from a global perspective, and
finally, Section 4.2.4 concludes this contribution.

4.2.1 Background and Related Work

To achieve high availability, content, and service providers typically employ CDN
operators and utilize their already deployed and geographically distributed infras-
tructures [AGH+12, CFK+15]. In addition to increased availability, end-users profit
from the distributed nature of these CDNs when retrieving content from close-by
servers, reducing the overall latency. See Section 2.1.2 for a detailed description of
CDNs.

Many works from academia and industry have investigated these infrastructures,
the operation principles, as well as the performance of deployed CDNs [AGH+12,
CFK+15, NSS10, OSR+12]. Besides understanding and measuring CDN infrastruc-
tures, researchers have utilized CDN routing techniques to derive network condi-
tions [SCK+09]. In addition, approaches that optimize the routing of user requests
to the respective servers within a CDN, as well as, optimized anycast load balancing



168 4. Evolution in the Internet’s Core

have been proposed [CST15, FMM+15]. Poese et al. [PFA+10] present and analyze
the impact of an ISP recommendation service, providing insights about the current
network state, e.g., topology, load, or delay, to the CDN, which in turn bases its
server selection on the returned information. Frank et al. [FPL+13] revisits the ideas
and concepts of the presented approach, and among other features, enables a CDN
to allocate server resources within the ISP on-demand when necessary.

To further ensure the availability of content, customers may use multiple CDN
deployments. Other reasons to utilize more than one CDN provider may be cost
efficiency, e.g., different prices to serve content at different times or due to traffic
volume contracts. However, with multiple locations at different CDNs serving
the same service or content, either the customer or an additional service has to
choose between the actual CDN when a user requests a service or content [FPL+13,
LWY+12, XCW17]. Concerning multi-homed content, i.e., content that is distributed
by multiple CDNs, Liu et al. [LWY+12] present one of the first frameworks optimizing
performance and cost of the resulting CDN assignment. In the case of video streaming,
Conviva [Con19] uses a recommendation system that the video player software
utilizes [DSA+11] for the CDN selection. Besides Conviva, commercial solutions that
offer to act as the CDN selector in more general settings, e.g., websites or services,
exist [Cit18, Ora19]. However, there is currently little to no understanding of their
infrastructures, customers, and the effects on the global CDN landscape. With
respect to Meta-CDNs and especially Cedexis, Xue et al. [XCW17] are the first to
provide brief performance figures about the selected CDNs, focusing on deployments
in China. We aim at more broadly characterizing Cedexis as a whole while looking
at their infrastructure and performance on a global scale.

Nevertheless, we find, similar to Xue et al., partly suboptimal performance in terms
of latency, yet, we acknowledge that routing decisions may have other goals than
latency. Mukerjee et al. reinforce this argument in [MBM+16], which is closest to our
work. They analyze the effect of brokers, i.e., CDN selectors, on CDNs, characterize
potential problems and propose a new interface between these brokers and CDNs.
While a closer interaction may improve certain aspects, it remains open whether a
Meta-CDN such as Cedexis does harm a CDN’s profitability. Our results do not
suggest that a broker might prefer specific CDNs in certain regions, as we find similar
CDN choices worldwide.

The goal of this contribution is to extend the currently limited understanding of
Meta-CDN operation by characterizing Cedexis as a prominent example of a generic
Meta-CDN. Exemplified by understanding its overall deployment, customers, and the
effects Cedexis, we aim to provide a stepping stone towards a better understanding
of Meta-CDNs in general.

4.2.2 Characterizing a Meta-CDN

The general motivation behind a Meta-CDN is to enable custom and dynamic
routing of requests to content that is multi-homed in different content distribution
infrastructures (CDIs). A CDI can involve any infrastructure ranging from simple



4.2. Individualism in the Age of Giants – Indirection through Meta-CDNs 169

$ dig www.accorhotels.com

...

;; QUESTION SECTION:
;www.accorhotels.com. IN A

;; ANSWER SECTION:
1 2 3

www.accorhotels.com. 3210 IN CNAME 2-01-2770-000c.cdx.cedexis.net.
2-01-2770-000c.cdx.cedexis.net. 16 IN CNAME cs893.wac.edgecastcdn.net.
cs893.wac.edgecastcdn.net. 2809 IN A 152.195.39.57

Figure 4.6 Exemplary output of dig resolving a customer domain managed by Cedexis. The
requesting user is redirected by the Cedexis authoritative DNS with a CNAME to the CDN
selected to handle the request. The Cedexis CNAME contains the customer ID 2 (CID) and a
per-customer application ID 3 (AppID).

(cloud-hosted) servers to complex CDNs [PFA+10]. Multihoming content on different
CDIs enables CPs to optimize for availability, performance, or operational costs. By
utilizing a Meta-CDN, CPs can realize custom routing logic to direct traffic to the
available CDIs. Such custom routing logic can be motivated by CDIs that offer better
performance or lower costs in some geographic regions, at certain times of the day,
or when exceeding predefined request volumes. We refer to an infrastructure that
enables routing between CDIs with customer-provided routing logic as a Meta-CDN,
a concept that is also referred to as Multi-CDN selector [XCW17] and has similarities
to auction-based CDN brokers [MBM+16]. Since the individual routing approaches
employed by CPs at the Meta-CDN are unknown to the involved CDIs, directed
traffic, and thus generated revenue gets harder to predict. In particular, since
decisions can be based on active performance measurements by the Meta-CDN, a
(single) delivery of suboptimal performance by the probed CDI can result in rerouting
traffic to a competing CDI and thus losing revenue. While the effects of Meta-CDN
operation are relevant to Internet operation, little is known about Meta-CDNs.

To elucidate Meta-CDN operation, we start by characterizing Cedexis as a prominent
example. We base this characterization on showing i) its operational principles to
select and routing between CDIs based on the Cedexis site (Section 4.2.2.1) and
ii) its current use in the Internet by analyzing its customer base in Section 4.2.2.2
based on our measurements. Both perspectives provide a first understanding of the
principle mechanisms with which Meta-CDNs can influence the content distribution
and their current deployment in the wild.

4.2.2.1 Operation Principles

Like many other CDNs, Cedexis employs a DNS-based redirection scheme, similar
to Akamai [NSS10], to redirect the requesting user to the CDI selected for content
delivery. This redirection scheme bases on canonical name (CNAME)-records which



170 4. Evolution in the Internet’s Core

transfer the requesting user between the different authoritative name server (NS) (see
also Section 2.1.2). We exemplify this scheme in Figure 4.6. Starting at the original
domain 1 , the user gets transferred to the Cedexis NS, which then selects a final
CDI. The configured static Cedexis CNAME includes a Cedexis customer ID (CID)
2 and configuration specific (AppID) 3 . Both identifiers enable the Cedexis NS to
perform customer-specific request routing, once the client’s DNS resolver contacts
the NS for name resolution. Similar to classic CDNs, routing can be subject to a
user’s location, e.g., identified by DNS resolver IP address or EDNS0 client subnet
extension. The Cedexis NS then points to the selected CDI, which can be an IP
address in an A resource record or another CNAME, e.g., pointing to CDN (Verizon’s
Edgecast in this particular example). The selected CDI can then repeat this process
to select the final server handling the request or point to another CDI. By realizing
routing in the DNS, Cedexis redirects requesting users to a CDI before they establish
a connection to the CDI. This way, it is not involved in the actual content delivery
itself and thus does not alter the performance or security properties provided by the
selected CDI.

CDI Selection Options

The above-stated request routing approach can be arbitrarily dynamic, i.e., the user
to CDI mapping in the DNS can change at any time, only limited by the cacheability
of their DNS records. This aspect is utilized to enable CPs to realize custom
routing logic within Cedexis using three components: i) Openmix enables Cedexis
customers to configure individual routing logic. Customers can choose between
optimal round-trip time (RTT) to select the CDI with the lowest RTT to the
requesting user, round-robin balancing between all CDIs configured by a customer,
throughput to select the CDI with the highest throughput, a static routing or
by executing customer-provided code. This routing logic can be informed by
ii) Radar, an extensive database for decision making based on active browser-based
CDN measurements performed by website visitors, and iii) Fusion, to retrieve data
from CDNs. Every customer can configure site-specific behavior (i.e., Apps), which
results in different AppIDs in the DNS. This way, a customer can configure different
routing profiles for downloads.domain.tld and for images.domain.tld. We next describe
the two data sources and the Openmix platform to realize custom routing decisions.

Radar

Cedexis provides a community-driven CDN performance measurement platform called
Radar. Radar employs active measurements performed within the Web browser of
visitors of Cedexis-managed websites. The in-browser measurements require the
Cedexis customers to embed a JavaScript in their website. Once visited, the Web
browser triggers the website’s onLoad event, the embedded JavaScript waits for a
user-configurable timeout (default 2 s) and starts requesting probe instructions from
Cedexis. Users can configure private probes (i.e., to estimate their own performance)
and can choose to activate community probes (i.e., enabling Cedexis to measure
other infrastructures). Probes can serve different purposes, latency or throughput



4.2. Individualism in the Age of Giants – Indirection through Meta-CDNs 171

measurements, which Cedexis realizes by instructing the JavaScript to fetch and
measure the download time of a small 43B file (for latency) or 100 kB file (for
throughput) via HTTP. After having performed the measurements, the JavaScript
reports the obtained values back to Cedexis such that they can later be used to guide
performance decisions in the CDN selection process and to inform site operators
about their site’s performance.

Fusion

While Radar enables to realize performance-based routing decisions, Fusion enables
to accomplish decisions on statistics directly from a user’s CDNs. CDNs typically
offer statistics about traffic shares, quotas, budgets, performance and other key
performance indicators (KPIs) in their Web interfaces. By accessing these, Cedexis
enables their customers to draw not only performance decisions but also business
decisions (e.g., will I hit my quota soon?).

Openmix

Both Radar and Fusion data are available to customers in the Openmix platform.
Openmix enables customers to customize the DNS resolution process by providing
custom JavaScript code that the Cedexis NS executes in the DNS resolution step.
Within this code, customers can define their subsequent candidate CDI choices and
request measurement data (e.g., availability, latency, or throughput) for these. While
many probes power the system, it returns only single values, suggesting that Cedexis
preprocesses the measurement data, yet we were unable to find more information
on this process. Thus, Openmix is used to realize customer-specific routing decision
performed within the DNS resolution, i.e., directing traffic to a target CDI via a
DNS CNAME.

Takeaway. Cedexis offers its customers to realize site-specific, fine-granular, and
dynamic traffic routing to CDIs, e.g., based on customer-provided code and informed
by rich measurement data. The performed traffic routing is hard to predict (e.g., for
CDIs).

4.2.2.2 Customers

Before we analyze the infrastructure and configuration of Cedexis, we want to shed
light on their customer base (in anonymous form). We are interested in which
companies and businesses leverage this additional service on top of traditional CDIs.

DNS Measurement Methodology

Our approach is twofold. First, we leverage the encoded customer and application
IDs in the CNAME structure (see Step 2 & Step 3 in Figure 4.6) to enumerate
customers. Applications are used by customers to define different routing pro-
files that map to the available CDIs, so, e.g., a customer may have one profile



172 4. Evolution in the Internet’s Core

01.F
eb 2

016

01.A
pr 2

016

01.J
un 2

016

01.A
ug 2

016

01.O
ct 2

016

01.D
ec 2

016

01.F
eb 2

017

01.A
pr 2

017

01.J
un 2

017

01.A
ug 2

017

01.O
ct 2

017

Date

40

80

120

160

200

240

280

#
Do

m
ain

s

DDoS Attack, 10th of May ’17

Outages of our probe

OpenIntel Own measurements

Figure 4.7 Domains utilizing Cedexis in the Alexa 1M over time. The drop in May ’17 was
caused by a DDoS Attack on Cedexis [CJ17]. Unfortunately, the measurement probe located at
our chair experienced two outages. However, the overlap of both scans motivates the further
use of the OpenIntel data set.

that optimizes for latency, and another for throughput. Conveniently, App IDs
start at 1. Thus our approach is to simply enumerate customers by resolving all
2-01-(C_ID)-(App_ID).cdx.cedexis.net domains. As customer and application
ID each have four hexadecimal characters, we would need to probe > 2.5B (168) do-
mains. To scale-down our DNS resolution, we only enumerate the first 256 application
IDs for each customer, resulting in resolving roughly 16M domains.

Domain Lists

Second, we probe domain lists to study the usage of the enumerated CNAMEs in
the wild and to discover application IDs beyond the enumerated 256 IDs. We thus
resolve the A-record of domain.tld and www.domain.tld for all domains in the
i) .com/.net (obtained by Verisign), ii) .org (obtained from PIR), iii) .fi (obtained
from Ficora), iv) .se/.nu (obtained from IIS), v) .new gTLD zones (obtained from
the Internet Corporation for Assigned Names and Numbers’s (ICANN’s) Centralized
Zone Data Service), vi) obtained from our passive DNS probe, and vii) the Alexa Top
1M list. We additionally include the Cisco Umbrella Top 1M list [Cis16], which is
based on the most frequent queries to OpenDNS resolvers and additionally contains
subdomains, e.g., images.domain.tld. Depending on the size of the list, we perform
daily or weekly resolutions for four weeks in August 2017 and extract all domains
which have a CNAME pointer containing *.cedexis.net.

Customer List

We combine both data sets to a customer list that will form the basis for probing
Cedexis globally in Section 4.2.3.

The list contains all customer application tuples, of which we discovered 84% in the
enumeration step, and 11.2% in both the enumeration and in the domain lists, and



4.2. Individualism in the Age of Giants – Indirection through Meta-CDNs 173

Type Share
Business 17.7%

IT 12.1%
News 11.3%

Gambling 11.3%
Shopping 8.1%
Gaming 8.1%

Type Share
Unknown 8.1%

Goods 5.6%
Automotive 5.6%
Advertising 3.2%
Streaming 2.4%
Television 1.6%

Type Share
Social 1.6%
CDN 1.6%

Patents 0.8%
Banking 0.8%

(a) Classification

Service Share
Web 62.7%

Unknown 15.6%
Assets 12.9%
Media 5.4%
API 2.3%

Bulk data 1.1%
(b) Services

Table 4.4 Cedexis customer information obtained from manual inspection of websites served
for different customer IDs. Please note that customers may operate multiple services, e.g.,
multiple brands of one holding company.

4.8% solely in domain lists. The reasons for the latter are application IDs larger
than 256, which were not part of our enumeration. Out of all customers, 55 (20)
have only 1 (2) application(s) configured. We also observe one customer having 84
configured. By resolving the domain lists, we find 4609 (sub-)domains pointing to
16% of all discovered (customer, application) tuples. We did not hit the remaining
84% when resolving our domain lists. For 62.7% of all customer application IDs, we
only find a single domain pointing to it. We find 31 (6) application IDs managing
more than 10 (100) domains, respectively.

We show the popularity of Cedexis over time among Alexa-listed domains in Figure 4.7.
We set up regular DNS resolutions in December 2016 and further show regular Alexa
resolutions performed by OpenINTEL [vRJS+16] in the Netherlands for the same
resource records. First, we observe that both data sets overlap, suggesting that
both are suitable for monitoring. Minor fluctuations in the number of domains per
day can mainly be attributed to fluctuations in the Alexa-listed domains [SHG+18].
Second, we observe an outage of Cedexis in May 2017, which was caused by a DDoS
attack on their infrastructure [CJ17]. The outage motivated some customers to
remove CNAME pointers to Cedexis in favor of pointing to operational CDNs instead,
causing a drop of > 120 domains in Figure 4.7.

Customer Classification

We next classify the discovered customers to highlight the variety of Cedexis customer’
profiles. To base this on an open classification scheme, we first tried to match
customer domains against the Alexa Web Information Service API. However, Alexa
classifications exist only for 17% of the queried domains, and some classifications
do not reflect the Web pages’ content. To obtain a broader picture, we instructed a
single human classifier to visit each website and categorize it according to an evolving
set of categories. We show the resulting categorized website content in Table 4.4(a).
The table shows that a broad range of customers uses Cedexis. We further classify
the used service in Table 4.4(b). The table shows that most customers use Cedexis
for general Web content delivery. This list includes few but large bulk download
services, e.g., www.download.windowsupdate.com. This observation is in contrast
to, e.g., Conviva, which dedicates to video delivery.



174 4. Evolution in the Internet’s Core

Takeaway. Several (large) Web services utilize Cedexis. Decisions taken by Cedexis
have the potential to impact larger bulks of Internet traffic.

4.2.3 A Global View on Cedexis

As Cedexis’ customers can realize routing decisions based on (network) location,
we next take a global view on its customers by using globally distributed active
measurements.

Measurement Setup

We base our measurements on 35 PlanetLab nodes located in eight countries, six
custom Raspberry Pi probes in six distinct German ISPs, and RIPE Atlas probes.
We chose PlanetLab and custom Raspberry Pis in addition to RIPE Atlas since
they enable us to deploy custom software to perform frequent DNS resolutions. As
we do not include PlanetLab nodes located in Germany in our set, we refer to our
deployed Raspberry Pis when mentioning DE in figures or plots. We selected only
few PlanetLab nodes with high availability to repeatedly measure always from the
same vantage points. For our measurement, we instruct the Planet Lab and our
Raspberry Pi nodes to resolve each domain every 15min and subsequently measure
the latency to the resulting IP addresses. Moreover, we keep track of all CNAME
redirections to CDNs that we observe throughout the measurement and also resolve
these. This way, we learn the set of configured CDNs for every probed domain.

4.2.3.1 Infrastructure

We start our global perspective by taking a look at the infrastructure that is deployed
and managed by Cedexis.

Authoritative DNS Deployment

Cedexis’ core functionality is based on a distributed infrastructure of authoritative
name servers managing *.cedexis.net. We find four servers configured in the DNS
in our measurements and the .net zone file. We remark that a larger number exists
which we found by enumerating their naming pattern. However, they currently
appear to be unused, i.e., not included in the .net zone and are not discovered by
our active DNS measurements.

To obtain a better understanding of its DNS infrastructure, we measure the ICMP
echo (ping) latency to their authoritative name servers from ≈ 870 responsive (out
of 1000 selected) RIPE Atlas probes. We repeated this measurement 30 times using
the same set of probes and show the minimum RTT in Figure 4.8a. Based on these
latency figures, we infer that Cedexis operates DNS servers located in North-America,
Europe, and (probably) Asia and South America. By analyzing individual latencies
and manual traceroutes per server-IP (not shown), we observe latencies of < 10ms



4.2. Individualism in the Age of Giants – Indirection through Meta-CDNs 175

<10ms
<20ms

<50ms
<100ms

<200ms
>200ms

(a) Minimum ping RTTs to the four
Cedexis authoritative NS.

<10ms
<20ms

<50ms
<100ms

<200ms
>200ms

(b) Median DNS query times to resolve an
A-record via Cedexis

Figure 4.8 RTTs and DNS query times obtained from ≈ 870 responsive RIPE Atlas probes
performing pings and DNS A-record requests.

from multiple regions (e.g., US-East, US-West, Europe, Hongkong) to the same DNS
server IP address. Since these low latencies are lower than required by the speed of
light between the respective regions, it suggests that the probed server IP addresses
are served using anycast routing.

Since the additional indirection step through Cedexis contributes latency, we next
measure the DNS resolution time of only their authoritative NSes. In this step, we
resolve the domain of a Cedexis customer from all authoritative name servers from
the same RIPE Atlas probes, again repeated 30 times. To limit the resolution to
only involve the Cedexis NS, we chose a customer-domain which directly returns an
A-record instead of redirecting to another CDN. This process is especially crucial if
the lifetime of the DNS records is short (which we analyze in Section 4.2.3.2) and
clients need to contact the Cedexis DNS over and over again. We show the median
DNS query time in Figure 4.8b and observe that the DNS query times follow the
previously measured ping latencies. Nevertheless, we observe few regions in which
Cedexis appears to have suboptimal coverage as these regions involve high DNS
resolution latencies, e.g., Latin America or Africa.

Radar Community Probes

Cedexis’ customers can realize routing decisions that are based on active measure-
ments of current service performance probed by visitors of Cedexis managed websites
(Radar platform, see Section 4.2.2.1). Understanding this data is interesting since
it can influence routing decisions. As the Radar data is not publicly available, we
instead analyze live feeds of network events detected by Radar and published at
https://live.cedexis.com. The events report three classes of metrics: latency,
throughput, and availability for ISP, CDN, and cloud infrastructures. An event can
be a latency in- or decrease, an outage, or a change in throughput. A CDN/cloud
event is detected if visitors from five different ASes reported it. Likewise, an AS
event is detected if it concerns five CDNs or clouds (see live.cedexis.com). Each
event can be classified by severity into minor, medium, and major. Apart from

https://live.cedexis.com
live.cedexis.com


176 4. Evolution in the Internet’s Core

0 200 400 600 800 1000 1200 1400
Number of reported event

(a) Locations of confirmed events.

avail rtt
CDN

tput avail rtt
ASN

tput avail rtt
Cloud

tput

Dimension

0

500

1000

1500

2000

2500

3000

#
Ev

en
ts

minor
medium
major
confirmed
not conf.

(b) Event types, status, and severity.
Figure 4.9 Cedexis events reported from 9th of October 2017 to 8th of January 2018.

being used in their decision-making process, this data allows monitoring the reported
infrastructures. We thus monitored the data feed from 9th of October, 2017, to 8th
of January, 2018.

Reported events further provide information about the location of visitors to these
Cedexis-managed sites. Cedexis derives this information from the JavaScript mea-
surement code that Cedexis’ customers embed into their sites reporting performance
figures to the Radar platform. While the number of events is likely uncorrelated with
the number of website visitors, it still indicates the presence of a visitor from the
reported AS or country. Therefore, we show the distribution of the number of events
per-country in Figure 4.9a. We observe almost no events in Africa, suggesting that
Cedexis’ customers do not have a large user base in Africa, which also coincides with
the suboptimal DNS deployment there. While we see events in almost every country,
most events are reported in Central Europe, North America, Brazil, and Russia.

We next analyze the reported events by their type, shown in Figure 4.9b. The figure
shows the number of events per event type categorized to availability (avail), latency
(rtt), and throughput (tput) for CDNs, AS, and cloud providers. Every bar is divided
into the number of confirmed and unconfirmed events. We observed that an event is
marked as confirmed when it was reported for at least 9min and the rolling variance of
measurements from the last 5 h exceeds an event- and severity-level-specific threshold:
e.g., a latency increase of 100% – 200% for a CDN is considered as minor, while an
increase between 200% and 500% is considered as medium severe. We find most of
the reported events to concern CDN, followed by ASes. The high number of major
availability events concern CacheFly CDN outages during our measurement period.

Takeaway. We observe visitors of Cedexis-managed sited from almost every country.
However, its anycast DNS platform is likely based in the US, Europe, and Asia. Users
in other countries can be subject to higher DNS query latencies.



4.2. Individualism in the Age of Giants – Indirection through Meta-CDNs 177

0 100 200 300
TTL [s]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F
of

do
m
ain

s

(a) CDF of customer-configured
TTLs values from Cedexis to the
serving CDN.

Share CDN TTL in seconds
32.9% Akamai

0 100 200 300 3600 380031.5% CDNetworks
0 100 200 300 3600 380019.2% DNSDD
0 100 200 300 3600 380014.8% Edgecast
0 100 200 300 3600 380013.4% Level3
0 100 200 300 3600 38008.7% Cloudflare
0 100 200 300 3600 38008.3% CDNWD
0 100 200 300 3600 38007.3% ChinaCache
0 100 200 300 3600 38005.8% Cloudfront
0 100 200 300 3600 38005.0% Highwinds
0 100 200 300 3600 3800

(b) TTLs of A-record for top 10 used CDNs. (Note
the gap in the time scale to display Edgecast using
anycast.)

Figure 4.10 DNS TTLs experienced among Cedexis-enabled domains. For (a) mappings from
Cedexis to the subsequent entry, and (b) the CDNs used for the final delivery.

4.2.3.2 How Customers utilize Cedexis

To shine a light on how Cedexis is utilized, we take a look at configured DNS TTLs,
how long the resolution takes as well as which CDNs are finally used to serve the
content.

DNS TTL

The DNS TTL defines the time a DNS resolver may cache a record and thus the
timespan between Cedexis’ balancing decisions. A small TTL allows more frequent
switches at the cost of more frequent DNS queries to the Cedexis DNS infrastructure.
This query latency can be significant, depending on the DNS resolver and NS location.
Figure 4.10a depicts the cumulative distribution function (CDF) of the TTLs for
the validity of the CNAME-mappings from Cedexis to the subsequent entity (see
2nd CNAME in Figure 4.6) for all customer domains. We did not observe country-
specific settings. Around 67% of all domains have configured a TTL of at most
20 s, indicating a rather short time scale enabling rapid reactions to changes. The
next 30% are within 300 s, denoting an already moderate reaction time while around
3% have configured higher TTLs. Higher TTLs can hint to non-latency-based, but
rather throughput or cost-based optimizations.
To compare these configurations to TTLs deployed by CDNs, we show the A-record
TTLs for the top 10 CDNs in Figure 4.10b. To the right of every CDN, the figure
shows the boxplot of TTLs observed for the A-records of all resolutions we performed.
We see that the top 3 CDNs use a short TTL in the range of most Cedexis CNAMEs,
whereas Edgecast has a lifetime of one hour (probably due to their use of anycast).

DNS Resolution Time

When employing Cedexis, an additional step in DNS resolution is required to enable
CDN balancing. Figure 4.11a compares the latency for resolving (from our Planet



178 4. Evolution in the Internet’s Core

0.00 0.05 0.10 0.15 0.20
Resolution time [s]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Cedexis
CDN
A-Record

(a) Lookup latency.

AU BRA CA CHN CZE DE JP POL
Country

0

25

50

75

100

Sh
ar
e

KeyCDN
Aizon
Incapsula
G-Core
ChinaCache

Cachefly
Fastly
MaxCDN
Limelight
Highwinds

Cloudfront
CDNWD
Cloudflare
Level3

Edgecast
DNSDD
CDNetworks
Akamai

(b) Share of CDN choices per country.
Figure 4.11 Lookup latency in DNS resolution and final CDN choices of Cedexis customers.

Lab sites) a mapping at Cedexis, in case of multi-staged CDNs a further CNAME
redirect (CDN) and the final resolution of the A-record. We observe that Cedexis
performs similarly to the other CDNs. However, while this hints at a good DNS
deployment for our vantage points, it also means that using Cedexis inflates the
latency of a DNS lookup. Given the on average short TTLs, users will often incur
an additionally added latency when using Cedexis-enabled websites.

CDN Usage of Customers

We next check how many CDNs are being used by Cedexis’ customers. Figure 4.11b
illustrates the overall CDN selection frequency for every PlanetLab and Raspberry
Pi node location over one month for all discovered Cedexis domains. We find that
domains are usually only using one or two CDNs while there are a few that use
more. This finding is consistent between geolocations. Only when looking at the how
often which CDN is actually selected (note: Figure 4.10b did only show the share
of domains using the CDN), we see a small geographic difference in China (CHN).
Here ChinaCache is selected more often than in other geolocations. Nevertheless,
apart from this, all geolocations behave similarly. This finding contrasts a finding on
the Conviva network [MBM+16] showing a bias in which some CDNs are selected
more often than others in specific countries. In summary, we do not observe that
Cedexis’ customers set country-specific routing decisions.

To extend our global view beyond the PlanetLab nodes, we next resolve the discovered
Cedexis domains from open DNS resolvers obtained from public-dns.info. To
avoid overloading (low-power) devices on user-premises (e.g., home routers), we
exclude all resolvers whose DNS names indicate access lines (e.g., “pppoe”, “dial-up”,
or “dsl”). We further only select resolvers with an availability >89%. In total, this
leaves us with 1998 resolvers in 161 countries, out of which 67 never successfully
responded. We resolve all Cedexis customer domains using all resolvers every two
hours for four days. Subsequently, we group the reported results by continent and
compare the top selected CDN. We observe that 66.9% always chose the same CDN
in every continent. For the remaining, we observe disagreement, i.e., different CDN
are chosen on each continent: 30.4% have two and 2.7% three CDNs present. We

public-dns.info


4.2. Individualism in the Age of Giants – Indirection through Meta-CDNs 179

0 50 100 150 200 250
Relative latency inflation [%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

DE
US

AU
BRA

(a) Relative difference to optimal choice.

0 50 100 150 200 250
Absolute latency inflation [ms]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

DE
US

AU
BRA

(b) Absolute difference to optimal choice.
Figure 4.12 Ping difference to the fastest CDN (RTT) when the choice was not optimal.

compare the complete CDN choices in countries of our PlanetLab nodes to their
mapping results and observe similar distributions as in Figure 4.11b (not shown).

Takeaway. Most Cedexis domains configure short TTLs to enable frequent switches.
We observe that most domains indeed balance between a few CDNs. Switches pose a
challenge to each CDN since traffic gets harder to predict.

4.2.3.3 Latency Perspective

We next take a latency perspective on Cedexis’ choices, i.e., comparing the latency
of the chosen CDN to all configured CDNs for every customer domain. Thus, we
measure the latency to every CDN IP by performing ICMP pings. We chose ICMP
pings over more realistic HTTP requests since the pings do not generate accountable
costs for the probed customers but remark that the ping latency can differ from actual
HTTP response latencies. Still, the ping latency can be a reasonable performance
and distance indicator for the different CDN caches.

Figure 4.12a shows the relative latency inflation for cases where Cedexis did not
choose the latency-optimal CDN. We observe that around 50% of all resolutions are
only marginally worse than the optimal choice regardless of the geographic location
(the figure shows a selection). The curves then start to flatten, indicating increased
latency inflation. We observe two groups, where around 10% (20%) of the choices
exhibit a latency increase of over 250%. The observed increase can be in the range of
few ms for nearby servers that would still deliver a good performance. Therefore, we
show the absolute difference of all suboptimal decisions in Figure 4.12b. We observe
that ≈ 50% of all decisions indeed only differ in a couple of milliseconds, indicating
almost no noticeable difference. Apart from the nodes in Brazil and Japan (not
shown), around 90% of all choices are even within a 20ms difference.

We remark that it is difficult to assess the quality and correctness of CDN choices as
we do not know the routing metrics that are employed by Cedexis’ customers. Our
measurements are motivated from the perspective of an end-user, who is interested
in performance, not in potentially monetary business decisions.



180 4. Evolution in the Internet’s Core

Takeaway. All available CDNs would deliver good latency figures in most tested
cases, suggesting that the choice of CDN performed by Cedexis would not significantly
impact end-user experience.

4.2.4 Summary and Discussion

In this contribution, we empirically investigated how CPs can overcome strict policies
enforced by Internet giants. Further, our contribution showed how policy-based
routing is enabled regardless of an ossified and deprecated Internet core.

To this end, we presented a broad assessment of a Meta-CDN deployment, exemplified
by dissecting Cedexis as a representative generic platform. By this, we enrich the
existing literature describing the Meta-CDN concept with an empirical assessment of
a large operator. We shed light on Cedexis’ customers, technology, and performance.
Cedexis DNS deployment, even though using anycast, appears to be focussing on
Europe, North America and parts of Asia indicated by high latencies in other regions.
We find customers to configure mostly low TTL values enabling fast reactions, and
we indeed observe that most domains balance between few CDNs. By assessing ping
latencies to all available CDNs, we observe that most available CDNs offer a good
performance to our distributed probing platforms. However, we also find a range of
suboptimal latency choices, which can indicate routing metrics other than latency.

The Meta-CDN operation challenges the demand modeling of the CDNs finally
delivering the resources. The routing decisions implemented by the Meta-CDN
customers affect the inbound traffic prediction at the CDN. This uncertainty especially
amplifies when a significant fraction of the CDN’s customers employ a Meta-CDN or
similar concepts. In particular, routing decisions can be based on active measurements
by the Meta-CDN — thus, bad performance can result in rerouting traffic and thus
losing revenue. Studying Meta-CDNs and their consequences thus pose an attractive
angle for future work.

4.3 Conclusion

Motivated by the large body of work on the transport layer circumventing ossified
network designs, we first explored to what extent the network layer suffers from
similar problems. To this end, we listened into ICMP backscatter produced by our
measurements presented in Chapter 3 and discovered a substantial dataset that
allows studying the ossification and deprecation. In summary, we found a plethora
of outdated and misconfigured systems. This highlight the significant challenges
when trying to innovate on the network layer, and as a consequence this reinforces
the observation of little innovation on the network layer. Many of our findings show
problems that were documented over two decades ago but are still present in today’s
Internet. We further discovered a significant degree of unreachability in IPv4 of
which routing loops are the most severe reason which we even found at our upstream
ISP.



4.3. Conclusion 181

Persuaded by these findings, we investigated Meta-CDNs that seem to be able to cope
with these limitations and still innovate in the area of content routing. We dissected
Cedexis as one of the largest generic Meta-CDNs and showed their operational model
that does not at all rely on network layer innovation but instead solved this challenge
with the help of an additional indirection layer within the DNS. Using globally
distributed vantage points, we further analyzed how using Cedexis may impact their
customers and found that they are not represented in all parts of the world equally,
which could lead to suboptimal performance. Furthermore, we investigated how
content owners are utilizing Cedexis and found that they generally configure the
Meta-CDN to allow switching the serving CDN in short periods. By this, content
owners regain control over these Internet giants that finally deliver their data and
put them under pressure as end-user measurements and monetary decisions may now
affect the profits of the utilized CDNs.

Driven by how Meta-CDNs innovate by pushing functionality onto the application
layer, we next investigate how the evolution of new Web APIs on the application
layer is currently abused in the Internet.



182 4. Evolution in the Internet’s Core



5
Abusing Innovation on the
Application Layer

The two previous chapters have shown that ossification on the transport layer and in
the Internet’s core is significantly challenging the deployment and development of
new technologies. Section 4.2 has shown that content providers (CPs) go up the stack
to realize content routing with the help of DNS redirections. To this end, [RFC1925]
jokingly admits that

(6) It is easier to move a problem around (for example, by moving the
problem to a different part of the overall network architecture) than it is
to solve it.
(6a) (corollary). It is always possible to add another level of indirection.

— Ross Callon [RFC1925]

While there is a truth to this, protocols and applications on the application layer
have, in contrast, been relatively easy to adopt and evolve. This ease is reflected in
the swift evolution of the Web since the early 2000s moving from static to dynamic
and interactive content. Figure 5.1 shows the standardization timeline of a selection
of Web application programming interfaces (APIs) that are being standardized by
the World Wide Web Consortium (W3C). The figure shows two things; first, the
Web community is actively working on a plethora of new technologies and, second,
the capabilities of the Web are rapidly expanding to new levels. To this end, a
recent W3C community group proposal even grants native file system access to
websites [Kru19], enabling, e.g., text editors that natively work with local files, i.e.,
a capability that has been reserved for non-Web apps. While this evolution is not
without hurdles, e.g., Web browser compatibility has been a reoccurring issue for
decades, it typically involves only the Web browser vendor and the website’s hoster
that uses the API, and both have a strong will to push the feature.



184 5. Abusing Innovation on the Application Layer

201
0

201
1

201
2

201
3

201
4

201
5

201
6

201
7

201
8

201
9

202
0

WebAssembly JS
High Res. Time 2

Payment
WebRTC 1.0
Web Audio
Wake Lock

Coop. BG Sched.
Audio Output Dev.
Resource Timing
Battery Status

Websockets

Working Draft
Last Call
Candidate Recommendation

Figure 5.1 Standardization timeline (as of August 2019) of a selection of Web APIs documents
from W3C which are candidates or proposed standards.

However, there is only limited research on the utilization of these new APIs in
the Web at large. The largest body of work is in the context of Web browser
fingerprinting (to reidentify user across website visits)35. Nonetheless, these works
focus on the API’s ability to fingerprint and do not take a look at the API use itself.
In this chapter, we, therefore, want to investigate our last research question, how are
application-layer optimizations that are pushed forward by Internet giants used at
large?

Specifically, we want to focus on how this new technology is deployed and abused at
large. Our approach to this is motivated by news and media reports about browser-
based cryptocurrency mining, e.g., [Gua17a, War18]. Thus, our next contribution
investigates the prevalence of browser-based mining in the Web and how application
layer innovations are fueling it. For this, we have to overcome several research
challenges.

Research Challenges

• How can we inspect the dynamic nature of websites on a large scale?
Today, websites have become increasingly complex and are often heavily modi-
fied after initial loading with the help of JavaScript. These scripts can either
load additional scripts or resources or modify the website’s structure. These
dynamics make it increasingly difficult to analyze the Web as merely down-
loading the HTML is not sufficient. We thus need to find a way to execute the
dynamic nature of today’s Web on a large scale such that our analyses can
cover large parts of the Web.

• Privacy-preserving blockchains make it seemingly impossible to iden-
tify users.
Modern blockchain-based cryptocurrencies are designed with privacy in mind.
For example, Monero uses ring signatures to hide a single user in a larger

35A survey can be found in [LBB+19].



5.1. Browser-based Cryptocurrency Mining 185

group and stealth addresses for receiver privacy increasing the anonymity
set. To study the prevalence of browser-based mining, we nevertheless want
to find a way to associate mined blocks with a miner, which is possible in
non-privacy-preserving blockchains by looking at the transaction that pays the
miner.

5.1 Browser-based Cryptocurrency Mining

The Web economy has traditionally used advertisements as a means to monetize
services that are otherwise offered free of charge. This business model relies on the
implicit agreement between CPs and users where viewing ads is the price for the
“free” content. This traditional approach has very recently been complemented by
a new monetizing model in which the computational resources of website visitors
are used to mine cryptocurrencies to generate revenue for the website operators
(browser-based mining).

Mining is the method of producing new blocks in blockchain systems, most promi-
nently cryptocurrencies such as Bitcoin. It requires miners to solve a computationally
expensive puzzle to cryptographically link a new block to the previous block in the
blockchain. The difficulty to solve this puzzle depends on the combined computing
power of all users — depending on the difficulty, an individual requires powerful
machines to increase the probability of mining a block (e.g., GPUs, FPGAs, or even
ASICs). The system provides an incentive for contributing this computing power by
awarding miners with currency for every mined block. This monetary reward has
rendered crypto mining a business — browser-based mining extends this business to
monetize the Web.

Not all cryptocurrencies are equally suited for browser-based mining. The hardware
imbalance in Bitcoin (resulting in a high mining difficulty) renders its in-browser
mining inefficient and motivates the use of, e.g., Monero as an alternative currency
that can be efficiently mined on CPUs and thus browsers. Given its design, websites
have adopted Monero (e.g., The Piratebay or a video streaming service with sub-
sequent media exposure [Gua17a, War18]) and even botnets utilize it to mine on
millions of compromised hosts [Pro18]. To ease browser mining, APIs [Coi18, Cry18]
exist, e.g., for in-game financing [DeV17], link forwarding [Rüt18b], captchas, during
video streaming [Gua17b] or even as an entry fee for parties [OM18]. Our work
identifies Coinhive [Coi18] as a widely used service which provides a framework for
embedding a Monero miner into a website. While these frameworks enable mining
without the users’ knowledge (cryptojacking), other services (Authedmine) actively
ask users for their consent to do so as an alternative to displaying ads. Besides media
reports, little is known about the ubiquity and use of browser-based mining. We
find that this mining has only become efficiently possible with the help of recent
developments for Web APIs. Our findings show that WebAssembly (Wasm) and
Websockets are the two driving technologies which enable browser-based mining as,
primarily, Wasm offers an immense performance advantage over pure JavaScript to
perform the computationally expensive mining.



186 5. Abusing Innovation on the Application Layer

Given these new possibilities, we provide a first in-depth study of the prevalence
and economics of browser-based mining as a new Web business model. We base
this perspective on crawls of 137M .com/.net/.org domains and the Alexa Top 1M
list to first identify sites using browser-based mining, enabling us to create a new
fingerprinting method to identify mining code. Our analysis shows that 96% of all
Wasm code in our data is mining code. Thus, when mining is done without the
user’s consent, we find that Wasm is currently predominantly abused. Second, we
dissect the short link service of the largest Web-mining stakeholder Coinhive and
screen their market power and profits. Our contributions are:

• We investigate the prevalence of browser-mining in the three largest top-level
domains (TLDs) and the Alexa Top 1M, i.e., at over 138M domains.

• We present a new Wasm-based fingerprinting method showing the inadequate
capabilities of blocklists to detect mining.

• Moreover, we identify the largest browser-based mining-provider Coinhive and
dissect their link-forwarding service.

• We present a novel methodology enabling us to associate blocks in a privacy-
preserving blockchain to a mining pool.

• By applying our methodology, we screen Coinhive and show that they con-
tribute 1.18% of the blocks in the Monero blockchain mining Moneros worth
150 000USD per month (as of August 2018).

Structure. Before taking a look at the extent of browser-based mining, we first
establish the basics of blockchains and the mining process in Section 5.1.1. Then,
Section 5.1.2 measures the prevalence of browser-mining. Subsequently, we study
the practices, user base, and economics of Coinhive as the largest browser-mining
API provider in Section 5.1.3. Lastly, Section 5.1.6 discusses related work, and
Section 5.1.7 concludes this contribution.

5.1.1 Excursus: Browser-based Mining 101

Blockchain-based cryptocurrencies build on the principle of embedding financial
transactions in a public, tamper-proof series of blocks. The blockchain evolves by
continually appending new blocks storing the currently pending transactions of the
system; the block generation is called mining. Miners solve a crypto puzzle as a proof
of work (PoW) whose difficulty is dynamically adjusted to produce new blocks at a
constant block rate guaranteeing predictability and tamper resistance. Consequently,
when more miners compete for finding blocks, the difficulty rises such that the system
still meets the predetermined block rate. When the PoW meets the difficulty, it links
the newly mined block (containing new transactions) to the previous one rewarding
the miner with currency in exchange for the contributed computing power.

The recent hype around cryptocurrencies has led to substantial increases in difficulty
resulting in the need for faster hardware to mine blocks profitably concerning energy
costs. To increase the chance of earning currency, miners seek to increase their
available computing power. Graphics Processing Units (GPUs), field-programmable
gate arrays (FPGAs), or even specialized application-specific integrated circuits
(ASICs) currently serve this quest for speed. One can host substantial quantities of



5.1. Browser-based Cryptocurrency Mining 187

Miner’s
Coinbase TX

maj: 7
min: 7
ts: time.now()
prev:
nonce: ???
merkle_root:
num_tx: 4

…Blockchain Merkle Tree P2P Network

Pending TX Network
State

Difficulty
Block-
Reward

…

PoW Input

Bl
oc

k 
H

ea
de

r TX1
TX2
TX3
TX4
TX5
TX..

?

Figure 5.2 Monero blockchain and PoW mining input.

mining hardware in dedicated data centers. Another way is to bundle the computing
power of multiple miners in mining pools that share the earned revenue for the newly
mined block.

Browser-based Mining

Utilizing the computation power of website visitors provides yet another mean of
increasing the mining power. By embedding mining code into websites, a miner can
make use of the visitor’s central processing unit (CPU) resources during the visit.
The website operator thereby saves energy costs and mining hardware investments.
Thus, Web-based mining is an alternative revenue-generating model to monetize
websites and services. However, hidden mining or without user consent (i.e., crypto-
jacking) poses a significant challenge, and it is a known attack vector (Section 5.1.6).
While browser miners for Bitcoin exist (e.g., jsMiner from 2011 [Whi11]), the per-
formance imbalance between CPUs, GPUs, and ASICs poses an insurmountable
challenge for Bitcoin browser mining. Consequently, browser-based mining requires
cryptocurrencies with PoW functions that are only efficiently computable on CPUs.

Monero

Launched in 2014, Monero [Mon18] (see Figure 5.2) is a privacy-preserving cryptocur-
rency whose PoW is designed to be ASIC resistant (memory intensive and periodically
redesigned) enabling CPUs and thus browser-based mining. Specifically, it uses the
Cryptonight hash function [SJN+13] in its PoW to mine a new block with an average
block rate of two minutes. Figure 5.2 shows the PoW inputs; in Monero, a miner
constructs a Merkle tree of the transactions that are to be included in the new block,
requiring at least the Coinbase transaction paying the block reward to the miner.
A node in this tree is the hash of its two children with the individual transactions’
hashes as the tree’s leaves. Including the tree’s root links the transactions to the
PoW and the final block. Now the miner’s goal is to find a nonce such that the PoW



188 5. Abusing Innovation on the Application Layer

output (a hash) meets the global difficulty (here, literally the product of the hash
multiplied by the difficulty must be smaller than 2256). Thus, a miner needs to draw
a new nonce and recompute the hash until it satisfies this goal. The network can
easily verify that the proof holds through a single round of hashing. By including
the block in the blockchain, it awards the miner with the block reward expressed
through the Coinbase transaction. When using mining pools, the pool pushes jobs
(containing the PoW input) asking the miners participating in the pool to find a
nonce that satisfies a lower difficulty than that of the entire network. When the
miner solves the puzzle subject to this lower difficulty, then the pool awards the
miner with a share of the final block reward, and if, by chance, the puzzle’s solution
also meets the network’s actual difficulty, the pool mined a block.

5.1.2 Prevalence of Browser Mining

We start our analysis of browser-based mining by investigating its prevalence in
the Web. Thus, we visit landing pages of a large body of domains and identify
the presence of mining code using two approaches. Initially, we use a light-weight
approach to download website landing pages via Transport Layer Security (TLS)
across several datasets, i.e., .com (∼116M), .net (∼12M), .org (∼9M), and Alexa Top
1M (∼950K), and match their Hypertext Markup Language (HTML) body against
a public filter list (Section 5.1.2.1). Subsequently, we instruct a Chrome browser to
visit a subset of these domains to execute the Web page code and thereby monitor
Websocket interactions and Wasm code as prevailing techniques for browser-based
mining (Section 5.1.2.2). We obtain our datasets through Domain Name System
(DNS) resolutions similar to our previous studies in Chapter 3 and Chapter 4 from
zone files available at Verisign [Ver19] (.net/.com) and PIR [Pub19] (.org).

5.1.2.1 NoCoin List

We visit every domain, prefixed with www., via TLS and download the first 256 kB
of the domains’ landing pages using zgrab. 256 kB offers a good tradeoff between
capturing most content (i.e., scripts are often located in the head of the document)
and having a point where to stop downloading when pages do not stop sending
data. We then extract all JavaScript tags using lxml to apply the NoCoin filter
list [Hos18]. This list contains regular expressions to detect and subsequently block
mining code using common ad blockers. Figure 5.3 shows the number of domains
with hits to NoCoin filter rules on the top x-axis. Relative to the number of domains,
the bars on the y-axis show the relative share of the top 5 mining scripts (multiple
per website possible). We find the prevalence of mining websites to be rather low.
In comparison, (popular) Alexa-listed domains have the largest share (up to 0.07%).
This unevenness seems likely since mining is most profitable with websites having
many visitors. Looking at the miners, we find Coinhive, a Monero-based miner to be
most prevalent (used by > 75% of the mining sites). Notably, Authedmine, a variant
of Coinhive asking for explicit user consent to mine and wp-monero a WordPress
plugin follows but at much lower shares. We find other miners with smaller shares,



5.1. Browser-based Cryptocurrency Mining 189

11.Ja
n 2018
11.M

ar 201
8

02.M
ar 201

8
11.M

ay 20
18

27.Fe
b 2018
08.M

ay 20
18

28.Fe
b 2018
09.M

ay 20
18

Scan Date

0.00

0.25

0.50

0.75

1.00
No

Co
in

De
te
ct
ion

Sh
ar
e

Al
ex
a

.co
m

.n
et

.o
rg

coinhive
authedmine

wp-monero
cryptoloot

cpmstar
other

710 621 6676 5744 618 553 473 399
# Potential Mining Domains

Figure 5.3 NoCoin detected miners on the Alexa Top 1M and .com/.net/.org domains.

e.g., Cryptoloot a Coinhive clone. By manually inspecting a random subset, we
find false positives, e.g., cpmstar is a gaming ad-network that we could not verify
to contain mining code. For the once-popular jsMiner [Whi11], we find only 31
instances in all datasets combined. Takeaway. We observe a low prevalence of
mining in landing pages according to the NoCoin list. Most miners are Monero-based
with Coinhive having the largest share (> 75%).

5.1.2.2 Chrome

We complement the NoCoin analysis by broadly investigating patterns of mining
behavior when further executing the pages. Accounting for the dynamics enables us
to find mining domains beyond NoCoin-listed pattern. Through manual miner code
inspection, we find that the majority of JavaScript miners utilizes Wasm for efficient
PoW calculation. WebAssembly [Web18] is a binary instruction format — featured
in all recent (mobile) browsers — that enables to compile, e.g., C-code to Wasm for
efficient execution within the browser. Further, the communication to the backend
servers providing the PoW input in a mining pool often uses Websockets. Both
technologies have been pushed by large Internet giants in recent years to provide
new means to utilize the Web (see Figure 5.1). To detect these, we instrument a
stock Chrome Web browser using the Chrome Dev Protocol [Chr18a] to capture all
Websocket communication and to dump all detected Wasm code. One of the major
challenges is to decide when a (dynamic) page has fully loaded its content when
trying to inspect a large body of websites in a feasible amount of time. Notably,
since the website’s HTML must not necessarily directly include the mining code.
Often, scripts dynamically load the mining code after the rest of the page has loaded.
This practice has two reasons; first, it offers means to obfuscate the existence of the
mining code and, second, loading the mining code will not prolong the loading of
the website’s (actual) content. To decide when a page is fully loaded, we wait for
the page’s load event which the browser typically calls when it finished rendering
the body of the website however scripts may still alter the Document Object Model



190 5. Abusing Innovation on the Application Layer

(DOM) and load further resources. Thus, we also set a 2 s timer on every DOM
change but wait no longer than an additional 5 s before we mark the page as loaded
completely. This method offers an upper limit of the waiting time (and limits the
time we might actually mine) while being flexible to dynamic changes to the website.
In case of no load event, we wait no longer than 15 s to mark the website as timed
out. We further save the first 65 kB of the final HTML enabling us to compare
with the NoCoin list used previously. As this measurement is more time consuming,
we restrict our scope to the .org zone and the Alexa 1M. We prefix every domain
with http://www., allowing Chrome to follow redirects to the secured variant if
necessary. Thus, in contrast to our previous TLS-only measurement, we also analyze
non-Hypertext Transfer Protocol Secure (HTTPS) websites.

Miner Classification

To now detect mining code, we build a database for Wasm classification. To this
end, similar to antivirus software, we create a characteristic signature of the Wasm
code that we find. We build this signature by first combining the different Wasm
functions to a big blob (in strict order) and then apply a SHA256 hash function to
this blob to derive a signature. This hashing allows us to boil down the exact same
code to the same signature, however, is undoubtedly prone to minimal modifications
of the code. Through manual inspection of the Wasm, we build up a database of
∼160 different assemblies (often versions of the conceptually same miner) that we
found and categorized them, e.g., through their Websocket communication backend
or by some other distinguishing feature that we found in the code. Such features,
e.g., comprises the number of XOR, shift or load operations which we found to
be quite distinctive or function names hinting at the hash function itself. We also
experimented with using only these features for Wasm classification, so without
building an explicit database, that would allow being less prone to modifications.
This feature-based classification was challenged by the low availability of Wasm
analysis tools and frameworks. However, we found that a single feature is not enough
to accurately classify the code and that a combination is required. Given that our
160 signatures proved to cover our data, we refrained from further developing the
classifier but remark the interesting angle for future work that could benefit from
machine learning. We believe that such a Wasm feature analysis might become a
useful future browser feature to block certain (unwanted) functionality, especially
in light of fingerprinting and user privacy. However, given the deep embedding of
Wasm in the browser’s JavaScript engine, this is likely not something that could be
offered by a thrid-party browser extension.

Measurement Results

Table 5.1 summarizes our findings for the Alexa 1M and the .org TLD from measure-
ments in the first two weeks of May 2018. We observe that most Wasm code contains
mining functionality, and most miners are again Coinhive. To put the Chrome-based
approach in perspective to the NoCoin list, we apply the NoCoin blocklist to the
HTML saved by Chrome, i.e., after the execution of any JavaScript.



5.1. Browser-based Cryptocurrency Mining 191

Alexa .orgClass. Count Class. Count
1 coinhive 311 coinhive 711
2 skencituer 123 cryptoloot 183
3 cryptoloot 103 web.stati.bid 120
4 UnknownWSS 56 freecontent.date 108
5 notgiven688 46 notgiven688 92
Total WebAssembly 796 WebAssembly 1491

Table 5.1 Top 5 (∼80%) WebAssembly signatures. Most WebAssembly codes are miners
(∼96%), dominated by Coinhive.

NoCoin having Wasm Wasm blocked missed
Hits Miner Hits by NoCoin by NoCoin

Alexa 993 129 737 129 608 (82%)
.org 978 450 1372 450 922 (67%)

Table 5.2 Miners on Chrome data (incl. non-TLS) found through NoCoin and by our Web-
Assembly signatures.

Table 5.2 shows the number of miners detected by the NoCoin list and the fraction of
mining Wasm on this part as well as the total number of websites classified through
our Miner Wasm signature database and the subset of websites that were detected
by the NoCoin list. We observe that NoCoin classifies many websites as miners, of
which only a fraction really embeds mining Wasm code. This attribution indicates
false positives which we verified through random inspections. If we take a look at
the websites for which we found Wasm mining signatures, again, the NoCoin list
only classifies a fraction of these as having a miner — false negatives.

Website Classification

We use the Symantec RuleSpace36 [Sym18] engine to categorize the mining websites.
Table 5.3 shows the top 5 categories to which RuleSpace assigned the websites for the
NoCoin list matches as well as our signature-based approach. We observe a diverse
set of categories and that RuleSpace can classify a larger body of Alexa domains
than .org domains. Interestingly, the categories for NoCoin and our approach differ,
especially the top category shows a large mismatch, i.e., Gaming vs. Pornography
and Gaming vs. Religion. This mismatch could be caused by the gaming ad-network
mentioned earlier, but in general, it shows that using only the NoCoin list paints a
false picture of who is actually embedding this code.

Takeaway. Miners are already embedded on websites today. Simple blocklists are
ineffective to detect them all, and our signature-based approach can detect sites beyond
the NoCoin blocklist. Still, Coinhive is the most used mining service.

36Used in Symantec products to classify websites.



192 5. Abusing Innovation on the Application Layer

Alexa .org
NoCoin Signature NoCoin Signature

1 Gaming 19% Pornogr. 19% Gaming 29% Religion 9%
2 Edu. Site 9% Tech. 8% Business 8% Business 8%
3 Shopping 8% Filesharing 8% Edu. Site 6% Edu. Site 8%
4 Pornogr. 7% Edu. Site 5% Pornogr. 5% Health Site 7%
5 Tech. 6% Ent. & Music 5% Shopping 4% Tech. 6%
Categorized 79% 74% 54% 42%

Table 5.3 Top 5 categories, according to Symantec RuleSpace.

5.1.3 The Coinhive Service

Coinhive provides the most widespread miner and mining API (see Section 5.1.2)
and advertises its services with the slogan

Monetize Your Business With Your Users’ CPU Power
— Coinhive [Coi18]

Their services are built on providing a highly optimized Monero JavaScript and
Wasm miner to be embedded in websites. In turn, Coinhive keeps 30% of the mined
reward. Apart from offering this API, Coinhive offers, e.g., a Captcha service and a
short link forwarding service, which is the subject of our first analysis. Our tools on
which the following analysis is based are available at [Rüt18a].

Regardless of the actual service, the process works as follows: i) A Coinhive user
(e.g., a website owner) is assigned a unique token that is included in the API calls
which is used to associate the mined shares. ii) Upon a website visit, the miner is
loaded and it connects to the Coinhive mining pool and authorizes with the user’s
token to receive input for hashing. iii) Once a website visitor finds a valid hash, it is
committed to the Coinhive pool. iv) Eventually, Coinhive pays its users 70% of the
block reward and keeps the remaining 30%.

5.1.4 Short Link Forwarding Service

To begin analyzing Coinhive, we focus on its short link forwarding service, which
is similar to a standard short link service (e.g., bit.ly) but additionally requires to
compute a configurable number of hashes before resolving the link. When a user
visits an uniform resource locator (URL) of the service, she only sees a progress bar
indicating the share of hashes that her browser has already computed. When all
locally computed hashes have been committed to the service (i.e., the progress bar is
full), the service will return the original URL and instructs the browser to redirect
the user to it. This link redirection monetization is comparable to short link services
delaying the redirection while serving advertisements and paying the link creator a
commission as analyzed by Nikiforakis et al. [NMS+14]. With Coinhive, the creator



5.1. Browser-based Cryptocurrency Mining 193

100 101 102 103 104

Indexed token sorted by # links
100

101

102

103

104

105

106

Li
nk
sp

er
to
ke
n

Absolute
CDF

0.00

0.17

0.33

0.50

0.67

0.83

1.00

CD
F

Figure 5.4 The number of links per token (users) is heavily biased towards a small number of
users.

of the short link receives a share of the block reward that is mined by the users
visiting the short links.

Their short links follow a simple structure, identified by an alphanumeric ID trailing
the end of each link: https://cnhv.co/[a-z0-9]. We observed that new links are
assigned increasing IDs, which enables us to enumerate the link address space (a
common privacy failure with link forwarding services). As of February 2018, up to
four characters are used, resulting in a total of 1,709,203 active short links. We visit
all links and gather the Coinhive redirection HTML document to collect, i) the link
creator’s token — used to associate performed hashes to the link creator — as well
as, ii) the number of hash computations required by the link creator to resolve the
link. Even though a single user could own multiple tokens, we will regard users and
tokens as synonymous here.

Without actually computing hashes, we can already look at i) the distribution of
short links per Coinhive users as well as ii) the required number of hashes to resolve
the links. Figure 5.4 shows the distribution of short links per user. We observe a
power-law which highlights the existence of a few heavy users that created a large
number of links. In fact, only a single user contributes 1/3 of all links, and only ten
users create roughly 85% of all links. Of course, a single user could use multiple
tokens; however, this would only emphasize our current observations.

To truly resolve the link, the user needs to compute the required number of hashes
set by the link creator. Figure 5.5 shows the distribution of this link resolution
difficulty in the number of required hash computations. The dark blue portion of
the cumulative distribution function (CDF) depicts all observed links, while the
light red portion removes the previously observed bias by heavy users by counting a
required #hashes only once per user; i.e., 1000 links from the same user with the
same number of required hash computations are only counted once instead of 1000
times as in the dark blue dataset. To provide a perspective on the time it takes
to resolve a short link, we show the duration to compute the required number of
Cryptonight hashes in a Chrome browser with a commodity37 laptop on the top
x-axis. We observe that our laptop can resolve the majority of links in less than

372013 Macbook Pro 2.8GHz Intel Core i7: 20 h/s with 4 threads.



194 5. Abusing Innovation on the Application Layer

28 29 210 211 212 213 214 215 216

# Hashes required
100

101

102

103

104

105

106
#

Li
nk
s

105 1012 10190.00

0.17

0.33

0.50

0.67

0.83

1.00

CD
F

13s 26s 51s 2m 3m 7m 14m 27m 55m
Duration @20H/s

1.4h 16Gyr

All links
User bias removed

Figure 5.5 Required number of hashes and their frequency of occurrence as well as the time it
takes to compute these hashes. Please note the sliced and different-scaled x-axis.

51 s (1024 hashes). The heavy user bias is most prominent at 512 hashes, still, when
removing the user-bias over 2/3 of the links of all users can be solved with at most
1024 hashes in below one minute. To our surprise, many links require a longer time
to resolve; we find many different users and over hundreds of short links that set
the maximum of 1019 hashes, which takes several billion years to resolve. While the
user’s willingness to wait certainly depends on the content that is supposed to be
behind a short link, high values suggest either no desire to have them ever resolved
or misconfigurations (e.g., short link creators are not aware of the actual duration).

Link Destinations

To understand the kinds of links that the short link service is used for, we resolve all
links which require less than 10k hashes from the unbiased dataset (covering 85%
of this dataset, see the light red CDF in Figure 5.5). Additionally, we resolve a
random sample of 1000 links for each of the top 10 Coinhive users. To efficiently
resolve the short links without a Web browser, we replicate the working principle of
the Web miner in a non-Web implementation that can resolve multiple short links
in parallel making use of the official optimized Monero hash code. We found that
Coinhive alters the block header contained in the PoW inputs before sending them
to the users which the Web miner reverts deep within its WebAssembly38. This
modification appears to be a countermeasure to prevent using the Coinhive Web
miner outside of the Coinhive environment, e.g., in custom mining pools. We had to
roughly compute 61.5M hashes which we were able to do in little less than two days
on a capable server machine.

Top 10 User

We first investigate a random sample from all short links of the top 10 users (1000
links each) representing 80% of the link targets. Table 5.4 shows the classification

38A simple XOR with a fixed value at a fixed offset.



5.1. Browser-based Cryptocurrency Mining 195

Domain Category Freq. Domain Category Freq.
youtu.be Ent. & Music 20% ftbucket.info Msg. Board 9.9%
zippyshare.com Filesharing 10% getcoinfree.com Finance 9.2%
icerbox.com Filesharing 10% ul.to Filesharing 4.2%
hq-mirror.de Ent. & Music 10% share-online.biz Filesharing 2.9%
andyspeed Automotive 10% oboom.com Filesharing 2.8%
racing.com

Table 5.4 Top 10 domains present in 89% of all samples from the top 10 short link creators.

Category Count Category Count
Tech. & Telecomm. 1522 Shopping 572
Gaming 737 Finance and Investing 502
Dynamic Site 727 Ent. & Music 313
Business 578 Educational Site 305
Pornography 577 Hosting 298

Table 5.5 Top 10 categories of the unbiased dataset < 10K hashes.

for the top 10 domains (accounting for roughly 89% of all sampled URLs) that
we extracted from the destination URL. We again utilize the RuleSpace categories
to classify those ten domains manually. As the table shows, most links point to
streaming and filesharing services.

Top Categories

We employ the RuleSpace engine to further classify the unbiased dataset into cate-
gories. One URL can have multiple categories; therefore, a single URL can contribute
to different categories. For roughly 1/3 of the URLs RuleSpace has no classification,
for the remainder, Table 5.5 lists the top 10 categories and how often a URL falls
into each category. We observe that sites fall into a diverse set of categories, unlike
the top 10 users for which filesharing and streaming were the dominant categories
(Table 5.4).

Takeaway. Ten users dominate Coinhive’s link forwarding service. The links mostly
redirect to streaming videos and filesharing sites. We find that most short links can
be resolved within minutes; however, some links require millions of hashes to be
computed, which is infeasible.

5.1.5 Estimating the Network Size

While we find many websites to use Coinhive (see Section 5.1.2), it remains unclear
how many users visit these sites. Thus, the mining power and possible payouts
are unknown. To understand the available mining power and thereby the users of
Coinhive, we need to identify which blocks in the Monero blockchain were mined
through Coinhive.



196 5. Abusing Innovation on the Application Layer

Methodology

When the Coinhive network mines a block, one of the clients must have found a
nonce that satisfies the PoW difficulty. Then, a new block can be mounted into the
blockchain which contains the block header that is also part of the PoW input, as
well as all the transactions that have implicitly been included in the PoW input
through the Merkle tree root (see Figure 5.2). Thus, if we find the PoW input for
which a suitable nonce was found, we can investigate the blockchain and look at
the block that succeeds the block referenced in the PoW. If the transactions in that
block form a Merkle tree whose root is equal to that in the PoW input, we can be
sure that the PoW input was the one that was used to mine the block. This root
thus uniquely identifies the origin as each block contains the Coinbase transaction
(first leaf of the Merkle tree) which is used to pay the block rewards to the miner
(i.e., Coinhive). Thus we could never by accident see a Merkle tree root of another
miner in the PoW input.

We investigate the PoW inputs that are delegated by Coinhive to its miners by
connecting to one of their mining pools and request a new PoW input every 500ms.
As the network finds a new block on average every two minutes, we cluster the PoW
inputs by the pointer to the previous (at time of reception, most recent) block. We
found that we never obtain more than eight different PoW inputs (even though
more exist theoretically by permuting the transactions in the Merkle tree). Coinhive
currently operates 32 mining endpoints (which can be gathered from the JavaScript
or by enumerating the domain name), when we connect to all of them and repeat the
process, we observe at most 128 different PoW inputs per block. While this suggests
that there are two endpoints per backend system, it also puts us into the position to
investigate each of the 128 PoW inputs.

For each PoW input, we thus compare the Merkle tree root against the Merkle tree
root that is saved in the public blockchain. To find the right block to compare to,
we look at the block header from the PoW input (see Figure 5.2) and obtain the ID
of the previous block to which this PoW input’s block header is supposed to be the
successor. We then take a look at the blockchain and obtain the block that is truly
succeeding this previous block, i.e., the block that was ultimately mined. If this
block’s Merkle tree root is equal to that from the PoW input, this block must have
been mined through the Coinhive mining pools as the Merkle tree root is unique for
each miner.

Measurements

We have been requesting new PoW inputs for four weeks, and we are thus able
to confidently estimate a lower bound39 on the blocks mined through Coinhive.
Figure 5.6 shows a blue block for every Coinhive-mined block as well as the total
number of blocks on that day. As finding blocks correlate with users mining through
Coinhive, we were interested to see if blocks are found at certain times, which could

39There is a small chance that we miss PoW inputs when by chance blocks are found faster than
our PoW request interval.



5.1. Browser-based Cryptocurrency Mining 197

0

10

%Blocks

01 03 05 07 09 11 13 15 17 19 21 23
Hour of Day (UTC)

26.Apr 2018

03.May 2018

10.May 2018

17.May 2018

24.May 2018

Da
y

0 10
#Blocks

median

Figure 5.6 Mined blocks over time from the Coinhive network. Black parts mark outages of
our infrastructure.

hint at the geolocation of the users. However, the figure (upper subplot) shows that
blocks are found throughout the whole day, which might be an indicator of Coinhive’s
global reach. We find multiple days with significantly more blocks than on average,
e.g., the 30th of April, 10th, and 22nd of May 2018. The 30th of April precedes
Labor Day, a public holiday in over 80 countries, time zone shifts to UTC or holidays
could explain increased Internet usage resulting in more mined blocks. Similarly, the
latter two were Ascension Day and the day after Pentecost, both public holiday in
many (mostly) European countries.

In the median (average), we find 8.5 (9.0) blocks per day, but we noticed a disruption
of Coinhive’ service on the 6th and 7th of May which resulted in only a few to no
announced PoW inputs. We can estimate the combined hash rate of Coinhive by
taking the network’s difficulty into account. The difficulty denotes the expected
number of hashes that a miner must compute (statistically) to find a block. After
each block, the network adjusts this number by consensus such that the block rate
of two minutes is continued to be met. Throughout our observations, the median
difficulty was 55.4G hashes, which translates to a network hash rate of 462Mh/s. As
Coinhive mines roughly 8.5 blocks per day, they produce 1.18% of all 720 blocks/day
which translates to 5.5Mh/s. If we assume that a Web client performs between 20
to 100 h/s, then Coinhive requires between 292K and 58K constantly mining users.
Comparing our findings with numbers reported by Coinhive [Coi17] from September
2017 is difficult. Coinhive wrote that their hash rate peaked at 13.5Mh/s (then 5%
of the network’s hash rate). However, our results are averages over long periods
and derived from the statistical properties of the network, while those published are
momentary peak rates, and thus, a direct comparison is not possible.

If we sum up the block rewards of the ultimately mined blocks over the observation
period of four weeks, we find that Coinhive earned 1271XMR. Table 5.6 complements
our four-week analysis with three full months in 2018, showing its continuity. Similar



198 5. Abusing Innovation on the Application Layer

Median Average Hashrate Currency
[blocks/day] [MH/s] [XMR]

May 9.0 8.8 5.5 1231
June 10.0 9.7 5.5 1293
July 9.0 9.1 5.8 1215

Table 5.6 Coinhive’s mining power for three months in 2018.

to other cryptocurrencies, Monero’s exchange-rate fluctuates heavily. In August 2018
one XMR was worth 120USD, having peaked at 500USD at the beginning of 2018.
Thus, assuming 120USD, Coinhive mines Moneros worth around 150 000USD per
month of which they say, they give 70% to their users. Still, the operational costs
seem manageable, making it potentially profitable for Coinhive.

Takeaway. Coinhive currently contributes ∼1.18% of the mining power of the
Monero network. While probably profitable for Coinhive, it remains questionable
whether mining is a feasible ad alternative.

5.1.6 Related Work

Browser-based mining has been subject to substantial media coverage, e.g., reports
on Pirate Bay [Gua17a] mining, about hacked websites for mining [War18], miners
injected into the Google’s DoubleClick ad-platform [Tre18] or drive-by Monero mining
on Android [Seg18]. Many blog posts exist that report on Alexa-listed websites to
include mining code [Pix17, AdG17]; however, without detailing a methodology. A
list published on Github [Sec17] provides an overview of potential mining domains.
However, this list also includes entries such as google.com which is unlikely to be
mining. To the best of our knowledge, parallel to our work, [ELM+18] are the first
to investigate browser-based mining in an academic context. While they also find
Coinhive to be the most prominent service, their analysis is based on a string search
over a comprehensive set of HTML bodies, thus not accounting for actual HTML
structure which we did in our first analysis (see Section 5.1.2.1) which showed to
already produce skewed results, e.g., the categories of websites significantly differs.
We thus complement their results by incorporating WebAssembly fingerprinting and
further shed light on the inner workings of Coinhive. In further concurrent work,
Konoth et al. [KVM+18] estimate revenue for websites that include mining scripts on
the Alexa Top 1M. Further, they also analyze the nature of Wasm mining for detection
using a very similar methodology to what was the basis for our fingerprinting, such
as counting particular instruction or memory access pattern. Based on monitoring
DNS, [3Y18] also observes Coinhive as the dominant player. They report that most
cryptominers are present on adult websites in the Alexa Top 1K/3K. Similar with
regards to link-forwarders, [NMS+14] analyzed ad-based link forwarding services and
their revenue model, which relates to that of Coinhive, and thus, we believe that
their results also apply here.



5.2. Conclusion 199

5.1.7 Summary and Discussion

This contribution analyzes the prevalence of browser-based mining, a new revenue-
generating model to monetize websites and an alternative to ad-based financing that
is enabled by ASIC resistant cryptocurrencies such as Monero. By inspecting 137M
.com/.net/.org and Alexa Top 1M domains for mining code, we indeed find websites
that utilize browser-based mining. We find that this browser-based mining is enabled
primarily through the availability of new Web APIs, i.e., Wasm and Websockets. To
perform an in-depth inspection of these dynamic Web features, we heavily automate
a Web browser to further investigate the use of these new Web APIs. Interestingly,
especially Wasm seems to be nearly exclusively used for mining in the Web. While
we also find some other instances making use of Wasm, its efficiency is currently
clearly abused and likely not in a way that Internet giants that are currently pushing
this technology anticipated.

Still, the prevalence of browser mining is currently low at < 0.08% of the probed sites.
For its detection, we find that the public NoCoin filter list is insufficient to detect
browser mining broadly. We thus present a new technique based on WebAssembly
fingerprinting to identify miners, up to 82% of thereby identified mining websites are
not detected by blocklists. We identify Coinhive as the largest Web-based mining
provider used by 75% of the mining sites. Given its popularity, we further dissect
Coinhive’s link-forwarding service. We find that ten heavy users contribute over
80% of all short links, mostly targeting streaming and filesharing services. The
remaining short links target a diverse set of websites. We continue by dissecting
the economics of Coinhive, we devise a new method that allows associating mined
blocks with a mining pool, and we find that Coinhive mines 1.18% of all Monero
blocks and their visitors have a combined median hash rate of 5.5Mh/s. While we
find that Coinhive turns around Moneros worth 150 000USD per month, the current
value stability of cryptocurrencies requires further investigations if browser-based
mining can be an alternative revenue model to ad-based financing. Further, we
expect significant impact of the CPU intensive miner on a mobile device’s battery
lifetime, and questions how it affects a website’s performance or a visitor’s energy bill
is yet to be quantified, but it could be a huge hurdle to be competitive to ad-based
financing on a larger scale.

5.2 Conclusion

In this chapter, we have provided an outlook on how innovation on the application
layer can be analyzed in the Web at large. We have found that technologies such as
WebAssembly or Websockets are abused to perform cryptomining within a website
visitor’s browser. While the earnings for individual websites are likely limited,
the API provider seems to be able to benefit. Nevertheless, we believe that the
technologies such as Wasm or Websockets offer potential beyond cryptomining and
that the Internet giants that have been pushing these technologies are not to blame
for people abusing them. Still, these giants controlling browsers or infrastructures
could set measures into place to restrict the abusive use of the technologies.



200 5. Abusing Innovation on the Application Layer

Notwithstanding, there are many new Web APIs beyond WebAssembly and Websock-
ets that are being standardized. Most of them have not been analyzed concerning
their use beyond their fingerprinting potential. Further, with the introduction of
DNS over HTTPS (DoH) [RFC8484] on the application layer and its potential to
secure the transport of DNS records while also disrupting the traditional DNS model.
Now Web servers deliver DNS records instead of DNS servers, challenging DNS-based
monitoring used for malware and SPAM protection while liberating people by cir-
cumventing censorship. Further, DNS-based load balancing as profoundly performed
by content delivery networks (CDNs) may become even more challenged if DoH
messages are intertwined with the regular Web data exchange via HTTPS and Web
servers resolve domains on behalf of their visitors while residing in vastly different
networks and geolocations. These and other reasons have led to the formation of
the add working group within the Internet Engineering Task Force (IETF) in mid
2019 [IET19] and offer an exciting research angle to study how Internet evolution
may continue.



6
Conclusion

The Internet has undoubtedly lived through a tremendous evolution since the early
packet switching. This evolution is best visible in the way how we use the Internet,
which, for many parts, has drastically changed since the 1980s, e.g., through the use
of video and social media. Already in the early days of the Internet, its inventors
observed that there is only one constant in the Internet which is constant change,
often driven by new technologies or software innovations. However, today, the Internet
is considered ossified around the initial protocol design that dates back to the 1980s,
making it very challenging to deploy radical changes. Still, the visible evolution
driven by new businesses and their corresponding Internet applications has to be
supported by a technological evolution as the applications today demand increasing
bandwidths and reduced latencies that are not supported by the early protocols.
In fact, in recent years, we observed the emergence of many new and optimized
protocols often driven by the companies behind the demanding applications. Many
of these new proposals only become an Internet standard if the company is a giant
Internet player such as Google, but even then, many proposals are never deployed or
actively used due to the ossification in the network. Thus, the question arises on
how the Internet was able to technically evolve subject to the ossification around the
initial design given the rising demands.

Methodology and Research Objectives

In this dissertation, we approached this great umbrella question with the help of
Internet and network measurements from several angles. Motivated by how Internet
giants have transformed the visibly used part of the Internet and specifically the Web,
we recognize their critical importance today in delivering services, building networks,
and their involvement in various standardization bodies. In light of the dependencies
of all services on the network layer, transport layer as well as the application layer
mechanics, we focus on key technologies that were developed and, at least on paper,



202 6. Conclusion

have a critical impact on the performance. To this end, we developed novel Internet
measurement methodologies to investigate the large scale use of these technologies
in significant parts of the Internet and by Internet giants in particular. Our methods
and findings generate insights in Internet evolution and offer a neutral source of
information for standardization, research, and education that serves in the design of
new protocols or mechanisms.

In the following, we summarize our contributions and findings before we take an
outlook into future work and close with some final remarks.

6.1 Contributions and Findings

To approach the continuously unfolding question of how the Internet evolves, we
focus on three, in our believe important, questions. These questions are aligned to
our observations that Internet giants are transforming the Internet experience as
well as the difficulty to actually evolve core Internet technology. The following three
sections highlight the initial question and summarize our contributions and findings
to answer the questions.

6.1.1 What Is the Impact of Internet Giants on Internet Trans-
port Evolution?

This first question is motivated by the observation that the Transmission Control
Protocol (TCP) dominates Internet transport since the 1980s. Moreover, it is this
transport that governs the efficiency and performance of Internet transmissions, and
thus, plays a vital role in all data transmissions. Given that the wire format of TCP
remained unchanged since the 80s, and that changes to it are not deployable, we
first focus on the parameterization of the algorithms within TCP. These algorithms,
while standardized, are easy to tweak, especially for Internet giants that are in a
pursuit for performance. Often the standardized parameterization offers a common
ground to enable safe operation of all communication but not necessarily the most
efficient operation of individual communication.

Transport Protocol Parameterization

To this end, our first contribution (see Section 3.1) investigates the use of TCP’s
initial congestion window (IW) in all of Internet Protocol Version 4 (IPv4) and
by Internet giants in particular. The IW governs the number of bytes that can be
transmitted right at the start of a connection without probing the network and is
thus a critical component to bootstrap short Web flows. Our findings show that the
Internet Engineering Task Force (IETF)-standardized values prevail in the Internet at
large and that the current experimental recommendation of ten segments is prevalent
in IPv4. Nevertheless, when focussing on how Internet giants use this parameter,
we find values that range between 20 to 32 segments with exceptions of up to 100



6.1. Contributions and Findings 203

segments. These increased values highlight that Internet giants work outside of
recommended practices, but we also find that they are well aware of their actions,
and some utilize pacing to reduce the change of a negative impact of these increased
values. Indeed, within dedicated testbed measurements, we were able to validate the
increased performance, especially when using pacing.

QUIC Is the Next Big Thing on the Transport Layer

In our second contribution (see Section 3.2), we focused on Google’s QUIC proposal
as a radical redesign of the transport layer. QUIC is fueled by decades of transport
layer research and promises a clear path towards quickly evolving the transport layer
by encrypting even the header data. This resulting lack of observability by Internet
service providers (ISPs) challenges the QUIC deployment and standardization. To
this end, we were the first to investigate the use of QUIC in all of IPv4, in large
parts of the Domain Name System (DNS), and its prevalence in today’s traffic mix
using traces at a major European Internet exchange point (IXP) and Tier-1 ISP.
Our insights highlight that the Google flavor of QUIC is mainly driven by Google
and Akamai, which have a massive deployment. Even though the Akamai content
delivery network (CDN) fuels significant parts of the Internet, they were, at the time
of the investigation, not using it for the mainstream. Looking at the IETF variant of
QUIC, we find that the promises to increase the performance have brought further
Internet giants on board such as Cloudflare or Facebook. When looking at traffic
shares, we found up to 20% of QUIC in various traffic mixes, which are dominated
by Google, who push over 50% of their own traffic via QUIC. Thus, we find that
QUIC has already transformed the Internet without having left standardization, and
thus, is a practical challenge for operators today. We then set out to investigate how
much more performance QUIC may give in various emulated network settings. Our
findings show that QUIC can indeed outperform TCP, but applying our findings
from our first contribution, i.e., how Internet giants parameterize TCP, narrows the
gap. In an extensive user study, participants were able to spot a difference between
TCP and QUIC in a side-by-side comparison but mostly judge the website loading
speed indistinguishable. Only in severely adverse network conditions QUIC seemed
to win, but it also showed that often website structure and congestion control (CC)
algorithm play a much more significant role than the transport itself.

Congestion Control in the Wild

In our third contribution (see Section 3.3), we further drilled down on CC as
the fundamental principle underlying all sensible transports, be it TCP or QUIC.
Motivated by our findings and the well-known difficulty of fairness in CC, we
set out to investigate how the CC choice of Internet giants affects the resource
sharing in the Internet today. To this end, we compare the out-of-box behavior of
Linux CC algorithms against Internet giant-originating flows as well as how they
share the resources among themselves. Our findings indicate significant levels of
unfairness in the Internet today. Some of our findings directly boil down to an
explicit choice of CC, e.g., using bottleneck bandwidth and round-trip propagation



204 6. Conclusion

time (BBR) instead Cubic as Linux’s default. Still, it is too short-sighted to claim
that Internet giants abuse this unfairness for several reasons. First, our findings
indicate a significant relationship between the network bottleneck and the chosen
CC algorithm. For example, choosing BBR while having small network buffers,
results in a massive dominance of BBR, but when the buffers get larger, BBR might
even be disadvantaged. Second, stealing bandwidth from a competitor might look
tempting on paper, but Web content today is made up of a plethora of resources
distributed among several servers by several operators. Thus, stealing bandwidth
may ultimately have a negative effect, e.g., on the loading speed of a website when
competing resources are disadvantaged that are essential for displaying the website.
Ultimately, we showed that a simple measure, such as employing a fair active queue
management (AQM) algorithm at the receiver side, reintroduces fairness regardless
of CC by the Internet giants.

Reflection

Our findings indicate that Internet giants significantly impact and coin Internet
transport, be it in its design, deployment, or traffic shares. Their dominance puts
them into a powerful position. When they alter portions of their services to use a new
protocol or a protocol modification, they significantly impact the Internet as a whole.
Furthermore, they have raised the bar for transport standardization, which seems to
now require extensive tests of protocol features on significant parts of the Internet
before being considered for standardization. Nevertheless, Internet giants open up
their innovations and are keen to standardizing them, fueling Internet evolution and
protocol deployment. Of course, these actions are not entirely altruistic, and the
past has shown that a large deployment also outside the Internet giants is required
to overcome ossification problems. Further, while opening up the innovations, their
parameterization and configurations, especially in terms of CC, are a business secret
and allow further specialization.

6.1.2 How Do Content Owners Flexibilize in Light of Internet
Giants and Network Ossification?

This second question is motivated by, i) the observed power of Internet giants, and
ii) the often reported network ossification. More specific, how ossified is the Internet
really and how deprecated are the configurations? Further, given that Internet
giants seem to work around these limitations, how do content owners do both, i.e.,
circumvent network innovation limitations while not being at the sole mercy of the
Internet giants. We approach this question using two individual contributions that
shine a light on both aspects.

Network Ossification and Deprecation

This first contribution (see Section 4.1) towards the second question investigates the
degree of ossification and deprecation in the Internet, more specifically in IPv4. If the



6.1. Contributions and Findings 205

Internet were not ossified or suffer from deprecation, there would be a high degree
of practical innovations in the Internet. One of the critical challenges of Internet
measurements today is to keep the scanning footprint low. Thus, our key idea to
study how the Internet ages, in terms of ossification and deprecation, was to put our
Internet scans that we used to answer the first question to a second use. To this end,
we utilize usually neglected backscatter signals from the Internet’s control plane that
is fueled by Internet Control Messaging Protocol (ICMP) messages. By capturing
this ICMP backscatter to our scans, we were able to paint an expectable but somber
picture of the state of the Internet. In summary, we found a significant degree of
outdated systems. Ranging from generating long-deprecated source quench (SQ)
messages over the generation of redirect messages across the Internet to a high and
nuanced degree of unreachability, crowned by a significant extent of routing loops.
Our findings show that innovating at the Internet core is a significant challenge as
problems documented over two decades ago are still omnipresent today.

Meta-CDNs Liberate Content Provision

In the next contribution (see Section 4.2), we investigated how content owners
that seek dissemination can do so in an ossified and deprecated Internet where
Internet giants like CDNs control the dissemination infrastructures. To this end, we
analyzed the concept of a Meta-CDN at the example of Cedexis, a major Meta-CDN
operator. We shed light on Cedexis’ customers, technology, and performance. Cedexis
DNS deployment appears to be focussing on Europe, North America, and parts of
Asia indicated by high latencies in other regions. We find customers to configure
mostly low time to live (TTL) values enabling fast reactions, and we indeed observe
that most domains balance between few CDNs. By assessing ping latencies to all
available CDNs, we observe that most available CDNs offer a good performance
to our distributed probing platforms. However, we also find a range of suboptimal
latency choices, which can indicate routing metrics other than latency or suboptimal
decisions.

Reflection

Our analyses showed that the general public Internet is still highly ossified and
obsolete, challenging the deployment of new Internet core functionality, and thus,
impedes the general evolution of the Internet. While already CDNs solve many of
these impediments on the application layer, e.g., by utilizing DNS indirections, also
their globally deployed infrastructure with their deep peering puts them into the
situation to evolve more quickly than many others. To this end, it is interesting
how Meta-CDNs utilize the same mechanisms to innovate on top of CDNs and
challenge their mode of operation. Their model has two angles, one technical and
one monetary that naturally follows. That is, it challenges the demand modeling of
a CDN and likely also ISPs. The choice in steering traffic to a particular CDN (and
hence the revenue) is controlled by the Meta-CDN that can perform these decisions
based on costs or performance. Thus, a one-time lousy performance may result
in traffic rerouting and losing revenue. Even though we currently believe that the



206 6. Conclusion

Meta-CDN principle is not applied universally enough to actually interfere with the
CDN operation or cause any harm in traffic engineering (TE) for any involved party.
However, if the concept becomes more widely adopted, we might see effects similar
to those documented in [BBP+18], where the authors observe how an ISP’s TE is
overwhelmed by Apple acting like a Meta-CDN during one of their mobile operating
system upgrades.

6.1.3 How Are Application Layer Optimizations That Are Pushed
Forward by Internet Giants Used at Large?

This last question further looks up the stack where innovation has always been
possible without the need for core network support. Especially in the Web that has
seen a tremendous visible evolution from static to dynamic and interactive content,
many new standards have emerged. Web browser manufacturers such as Google
or Mozilla profoundly impact the standardization as usually, support within the
browsers is required. Hence, they are strategically positioned to shape the Web
landscape in terms of applications enabled by these new standards.

WebAssembly Fuels Browser-based Cryptomining

In our contribution (see Section 5.1) peeking into this broad question, we investigate
the use of WebAssembly (Wasm) in the Web. Wasm supersedes the ubiquitously
used JavaScript by offering a much more efficient instruction set that closely matches
today’s computing architectures. Envisioned application areas of Wasm include in-
browser gaming, video editing, image recognition, and other computationally heavy
tasks. However, driven by media reports about browser-based mining, we found that
Wasm is usually at the core of the computationally heavy proof of work (PoW) process
governing the mining. By inspecting large parts of the Web, we find that Wasm is
rarely used today. Subsequently, we designed a novel methodology to fingerprint
the Wasm code finding that about 96% of the collected Wasm code are miners.
Further, we found that public blocklists miss up to 82% of them. We then design a
methodology to associate the origin of the mined blocks to the largest browser-based
cryptocurrency application programming interface (API) vendor. At the time of the
study, they had a monthly turn-around of crypto coins worth 150 000USD, which
accounts for over 1% of the whole mining network.

Reflection

Admittingly, we peeked only into the surface of this last question. However, our
analyses showed an abuse that was likely unforeseeable by the inventors. While the
Internet giants are likely not to blame for the abuse of the technology, also the related
field of browser-fingerprinting (challenging a user’s privacy through tracking) has
shown that currently, Web standardization largely ignores potential adverse effects
of their work. We believe that a more thorough risk assessment might be required
and that measures, such as demonstrated by our fingerprinting approach, could be



6.2. Future Work 207

embedded into the standards. For example, by painting a clear path towards how
code could be compared, allowing browsers to directly expose such information.

6.2 Future Work

In this dissertation, we came into contact with many technologies and methods that
sparked a range of questions and ideas. In the following, we would like to give an
overview of some of these that we believe are worth further exploring.

Methodologies to Measure the Evolution in IPv6 and the Web

In our work, we have exclusively focused on IPv4, mostly due to the non-existing
Internet Protocol Version 6 (IPv6) infrastructure at our chair. Still, in IPv6, it
is structurally infeasible to enumerate all services, and the Internet measurement
community is currently working on hitlists, e.g., Gasser et al. [GSG+16]. Furthermore,
the increasing use of virtualization in the Internet, that has basically demanded us to
modify our IW scanning methodology when investigating CDNs, further diminishes
the importance of Internet Protocol (IP) address-based scans. Thus, also the creation
of comprehensive and diverse DNS-based lists is ongoing and future work, especially
when they should apply to many research areas.

Bootstrapping Congestion Control

Our work on IWs (see Section 3.1) and its observed customization naturally lead
to the observation that they could be further tailored to individual users. While
there are indeed approaches such as [FKB16] that learn an IW, they also do learn
a lower “safe” bound. They are genuinely unaware of the path’s capabilities when
launching a connection. Depending on where a network bottleneck is located, a
client could signal the availability of bandwidth. We have already peeked into this
idea in [RWS+19] and added a client-side bandwidth estimate in QUIC, which the
server uses to bootstrap CC into congestion avoidance. Still, this approach is prone
to false estimates, and it is still unclear what impact such a change would have on
more flows and a bottleneck located somewhere else in the network. A promising
architecture for investigating the problem in an extended manner is presented by
Kühlewind et al. [KBT+17], where on-path nodes can include protected in-band
signaling to traversing packets. This way, nodes could signal a safe bandwidth along
the path to bootstrap CC as in the Rate Control Protocol (RCP) [Duk07].

Dynamics of Congestion Control in Underutilized Setting

Within all our testbed studies investigating the performance or fairness of CC, we have
relied on bulk flows that strive to fully utilize all available bandwidth. Admittingly,
many real applications may have a vastly different pattern. For example, the
ubiquitous use of video streaming using Hypertext Transfer Protocol (HTTP) DASH



208 6. Conclusion

that makes up substantial amounts of Internet traffic leads to a highly bursty CC
demand. A burst of data needs to be transmitted following periods of idle. Current
CC algorithms lose their network model and should start from scratch (or utilize
pacing as is the case for YouTube). However, in the meantime, the network may
have changed dramatically, e.g., when assuming mobility. In the advent of QUIC,
a redesign of DASH that is tightly coupled to the underlying CC (which becomes
accessible in QUIC from the user space) may offer new ways to innovate in this area.
In this regard, learning-based CC algorithms, such as Vivace [DMZ+18], might be
worth exploring in terms of their cross-layer interactions, and how one can combine
their rapid detection of change with the largely predetermined demand of video
bitrates.

Congestion Control Identification in the Wild

In our work on CC fairness (see Section 3.3), we easily identified several CC algorithms
by how they interacted with flows generated in our testbed. However, some behaved
vastly different, and as our work showed, it is detrimental for fairness and performance
to test new CC algorithms against those actually used in the Internet. Furthermore,
our work on IWs (see Section 3.1) highlights the parameterization potential of CC.
Current approaches to CC identification rely on a hand-tailored model of the CC
algorithm that fails when only tiny assumptions are rendered invalid, e.g., when the
parameterization changes slightly. Further, with QUIC, essential headers for CC
identification become unavailable for a passive observer. In this light, we have already
worked towards a deep learning-based approach [SRH+19] that solely relies on packet
arrival information for CC identification. While it shows already promising results,
the dynamics of CC mentioned above also challenge the inference accuracy, and the
CC algorithms need to be available to generate training data. Two assumptions that
not necessarily hold in the general Internet and warrant further research. Especially
the application of machine learning to networking tasks, may not only in this specific
setting offer further means to handle the vast diversity of the Internet.

User Privacy in QUIC

QUIC promises increased privacy through pervasive encryption. Our work on
fingerprinting services with the help of connection parameters (see Section 3.2.4.2),
however, highlights that privacy-exposing mechanisms may still be within the protocol.
On a larger scale, we believe it is of great interest to methodologically investigate
how an active “attacker” could expose a user’s privacy. A starting angle for this
could be QUIC’s acknowledgment (ACK) delay mechanism, encoding the time it
took from receiving a packet to generating the corresponding ACK. This timing
information could be unique to individual users and devices or within specific load
scenarios such that blinding of these values may be required to preserve privacy.
Ultimately, a methodological approach in finding such hidden entropy exposing user
privacy is an ambitious research objective.



6.3. Concluding Remarks 209

Understanding the Dark Net

In this dissertation, we have utilized large-scale Internet measurements, e.g., in our
investigations of Wasm usage (see Section 5.1), we scanned significant parts of the
Web. A largely neglected portion of the Internet in the area of Internet measurements
is the Dark Net building on top of Tor. While there are a couple of studies [BPW13,
BPT+14, AFA+19] that utilize long-fixed vulnerabilities in Tor or public lists of
services, a fundamental understanding of the nature of this network is missing in
academia. This has a plethora of angles, for once, Tor itself still suffers from high
latencies and low performance. To this end, Dhungel et al. [DSR+10] have shown
significant levels of delay within Tor; however, their study nearly dates back ten
years, and much has changed since then within Tor. Such an understanding ties to
the use of CC and its dynamics between the overlay nodes in Tor and could offer
exciting research objectives when combining it with the rich capabilities of QUIC,
e.g., mapping circuits to QUIC streams, reducing the effects of loss across circuits.
Furthermore, websites hosted as a hidden service are known to be rather simple due
to the low performance of Tor itself. Still, an in-depth analysis of their structural
differences is missing. Similarly, the Dark Net is often synonymous with a Dark
Web, but in fact, the Dark Net is not limited to websites demanding an in-depth
analysis of other services in Tor. From a research perspective, a tool similar to ZMap
would enable diverse research in the Dark Net that could be used to investigate its
evolution but has huge hurdles as Tor is designed to avoid such an enumeration.

Effects of Upcoming Internet Standards on Internet Evolution

This dissertation offers a snapshot of Internet evolution spanning a couple of years.
Undoubtedly, the Internet will continue to evolve, new players will emerge, and
others will fade away. In light of this constant change, we believe that our work
investigating the use of new Web APIs may offer many additional angles for future
work as this area is rapidly evolving. Similarly, fundamental changes such as our
analysis of QUIC (see Section 3.2) naturally offer significant potential for future work.
Along these lines is DNS over HTTP Secure (DoH) that currently sees a deployment
that warrants investigations, e.g., are techniques such as website fingerprinting, as
applied in Tor, applicable to DoH at the ISP to derive the DNS query?

6.3 Concluding Remarks

In this dissertation, we strived to enlighten Internet evolution with the help of
large-scale Internet measurements. Our goal was to gain a better understanding of
how the Internet practically works, and how the working principles have deviated
from textbook practice as well as how the discovered principles affect Internet
operation. While we are confident that the Internet continues to evolve and that
this dissertation can only serve as a snapshot in Internet history, we believe that
the individual contributions nevertheless advanced the general understanding of the
Internet. To this end, we have presented our work at various international conferences



210 6. Conclusion

and standardization meetings, e.g., at the IETF-101 or IETF-105, which allowed
us to get feedback from the protocol engineers and fuel the discussion around new
protocols and mechanisms, e.g., in QUIC as well as regarding HTTP/2 Server Push.

Still, this feedback and the perspectives that we have gathered have shown us that
there is always more to pursue and opened our understanding of the Internet beyond
the contributions of this thesis. Thus, we are eager to experience how the Internet
continues to evolve and how the future research angles that we outlined will affect
this evolution. In this regard, we close this dissertation with a well-aged quote from
the Internet’s founding fathers.

New modes of access and new forms of service will spawn new applications,
which in turn will drive further evolution of the net itself.
The most pressing question for the future of the Internet is not how the
technology will change, but how the process of change and evolution itself
will be managed.

— Barry M. Leiner et al. [LCC+09]



Abbreviations and Acronyms

ACK Acknowledgment
AEAD Authenticated Encryption with

Associated Data
AFCT Average FCT
AIMD Additive-Increase Multi-

plicative-Decrease
AMSS Aeronautical Mobile-Satellite

Service
ANOVA Analysis Of Variance
API Application Programming In-

terface
AQM Active Queue Management
ARPA-
NET

Advanced Research Projects
Agency Network

AS Autonomous System
ASIC Application-Specific Integrated

Circuit
ASN AS Number
BBR Bottleneck Bandwidth and

Round-Trip Propagation
Time

BDP Bandwidth Delay Product
BGP Boarder Gateway Protocol
CC Congestion Control
CCDF Complementary CDF
CDF Cumulative Distribution Func-

tion
CDI Content Distribution Infras-

tructure
CDN Content Delivery Network
CFCW Connection Flow Control Re-

ceive Window
CNAME Canonical Name

CoDel Controlled Delay
CP Content Provider
CPU Central Processing Unit
cwnd Congestion Window
DA2GC Direct Air-To-Ground Commu-

nications
DNS Domain Name System
DoH DNS over HTTPS
DOM Document Object Model
DRR Deficit Round-Robin
DSL Digital Subscriber Line
ECMP Equal-Cost Multi-Path
ECN Explicit Congestion Notifica-

tion
FCT Flow Completion Time
FPGA Field-Programmable Gate Ar-

ray
FQ Flow Queuing
FVC First Visual Change
GPU Graphics Processing Unit
gQUIC Google QUIC
HoL Head-of-Line
HTML Hypertext Markup Lan-

guage
HTTPS HTTP Secure
HTTP Hypertext Transfer Protocol
ICANN Internet Corporation for As-

signed Names and Numbers
ICMP Internet Control Messaging

Protocol
ICSL Idle Connection State Life-

time



212 Abbreviations and Acronyms

IDS Intrusion Detection System
IETF Internet Engineering Task

Force
IGP Interior Gateway Protocol
IP Internet Protocol
IPv4 IP Version 4
IPv6 IP Version 6
iQUIC IETF QUIC
ISP Internet Service Provider
IW Initial Congestion Window
IXP Internet Exchange Point
KPI Key Performance Indicator
LTE Long Term Evolution
LVC Last Visual Change
MIDS Maximum Incoming Dynamic

Streams
MIT Massachusetts Institute Of

Technology
MPLS Multiprotocol Label Switch-

ing
MSS Maximum Segment Size
MTU Maximum Transmission

Unit
NAT Network Address Transla-

tion
NIC Network Interface Card
NS Name Server
PLT Page Load Time
PMTU Path Maximum Transmission

Unit
PoW Proof of Work
QoE Quality of Experience
RACK Recent Acknowledgment
RCP Rate Control Protocol
rDNS Reverse DNS

RED Random Early Detection
RFC Request for Comments
RIR Regional Internet Registry
RTO Retransmission Timeout
RTT Round-Trip Time
rwnd Receive Window
SACK Selective Acknowledgment
SCFG Server Config
SFCW Stream Flow Control Receive

Window
SI Speed Index
SLA Service Level Agreement
SNI Server Name Indication
SQ Source Quench
sRTT Smoothed RTT
ssthresh Slow Start Threshold
STK Source-Address Token
SVID Server ID
TC Traffic Control
TCB Transmission Control Block
TCP Transmission Control Proto-

col
TE Traffic Engineering
TLD Top-Level Domain
TLS Transport Layer Security
TTL Time to Live
UDP User Datagram Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator
VC85 Visual Completeness 85%
VPN Virtual Private Network
W3C World Wide Web Consor-

tium
Wasm WebAssembly



Bibliography

[3Y18] 360Netlabs and Xu Yang. Who is Stealing My Power: Web Mining
Domains Measurement via DNSMon, 2018. url: https://web.archi
ve.org/web/20180515/http://blog.netlab.360.com/who-is-ste
aling-my-power-web-mining-domains-measurement-via-dnsmon-
en/ (archived on 2018-05-15).

[AdG17] AdGuard. Cryptocurrency mining affects over 500 million people. And
they have no idea it is happening., October 12, 2017. url: https://w
eb.archive.org/web/20180515/https://adguard.com/en/blog/c
rypto-mining-fever/ (archived on 2018-05-15).

[AGH+12] Vijay Kumar Adhikari, Yang Guo, Fang Hao, Volker Hilt, and Zhi-
Li Zhang. A Tale of Three CDNs: An Active Measurement Study of
Hulu and Its CDNs. In Proceedings of the INFOCOM Global Internet
Symposium (GI ’12), pages 7–12. IEEE, 2012. doi: 10.1109/INFCOMW.
2012.6193524.

[ACF+12] Bernhard Ager, Nikolaos Chatzis, Anja Feldmann, Nadi Sarrar, Steve
Uhlig, and Walter Willinger. Anatomy of a Large European IXP. In
Proceedings of the Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications (SIGCOMM ’12),
pages 163–174. ACM, 2012. doi: 10.1145/2342356.2342393.

[ASA00] A. Aggarwal, S. Savage, and T. Anderson. Understanding the Perfor-
mance of TCP Pacing. In Proceedings of the International Conference
on Computer Communications (INFOCOM ’00), pages 1157–1165.
IEEE, 2000. doi: 10.1109/INFCOM.2000.832483.

[Aka16] Akamai. Q4 2016 State of the Internet - Connectivity Report, March 1,
2016. url: https://www.akamai.com/us/en/multimedia/document
s/state-of-the-internet/q4-2016-state-of-the-internet-con
nectivity-report.pdf (visited on 2019-06-30).

[AC18] Akamai and Dave Comery. FAQ: QUIC Native Platform Support for
Media Delivery Products, April 10, 2018. url: https://community.a
kamai.com/customers/s/article/FAQ-QUIC-Native-Platform-Su
pport-for-Media-Delivery-Products (visited on 2019-08-01).

[Aka15] Akamai Community Forum. Can we change initial CWIN for web
experience products like DSA, Ion?, July 28, 2015. url: https://web
.archive.org/web/20180510/https://community.akamai.com/th
read/2694 (archived on 2018-05-10).

https://web.archive.org/web/20180515/http://blog.netlab.360.com/who-is-stealing-my-power-web-mining-domains-measurement-via-dnsmon-en/
https://web.archive.org/web/20180515/http://blog.netlab.360.com/who-is-stealing-my-power-web-mining-domains-measurement-via-dnsmon-en/
https://web.archive.org/web/20180515/http://blog.netlab.360.com/who-is-stealing-my-power-web-mining-domains-measurement-via-dnsmon-en/
https://web.archive.org/web/20180515/http://blog.netlab.360.com/who-is-stealing-my-power-web-mining-domains-measurement-via-dnsmon-en/
https://web.archive.org/web/20180515/https://adguard.com/en/blog/crypto-mining-fever/
https://web.archive.org/web/20180515/https://adguard.com/en/blog/crypto-mining-fever/
https://web.archive.org/web/20180515/https://adguard.com/en/blog/crypto-mining-fever/
https://doi.org/10.1109/INFCOMW.2012.6193524
https://doi.org/10.1109/INFCOMW.2012.6193524
https://doi.org/10.1145/2342356.2342393
https://doi.org/10.1109/INFCOM.2000.832483
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q4-2016-state-of-the-internet-connectivity-report.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q4-2016-state-of-the-internet-connectivity-report.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q4-2016-state-of-the-internet-connectivity-report.pdf
https://community.akamai.com/customers/s/article/FAQ-QUIC-Native-Platform-Support-for-Media-Delivery-Products
https://community.akamai.com/customers/s/article/FAQ-QUIC-Native-Platform-Support-for-Media-Delivery-Products
https://community.akamai.com/customers/s/article/FAQ-QUIC-Native-Platform-Support-for-Media-Delivery-Products
https://web.archive.org/web/20180510/https://community.akamai.com/thread/2694
https://web.archive.org/web/20180510/https://community.akamai.com/thread/2694
https://web.archive.org/web/20180510/https://community.akamai.com/thread/2694


214 Bibliography

[All15] Mark Allman. Removing TCP’s Initial Congestion Window. Internet-
Draft draft-allman-tcpm-no-initwin-00.txt, Internet Engineering Task
Force, November 24, 2015, pages 1–3. url: https://datatracker.i
etf.org/doc/html/draft-allman-tcpm-no-initwin-00. Work in
Progress.

[Ama19] Amazon.com, Inc. Amazon Web Service IP Address Ranges, August 20,
2019. url: https://web.archive.org/web/20190821/https://ip-
ranges.amazonaws.com/ip-ranges.json (archived on 2019-08-21).

[AG18] AOL and Google. WebPagetest, 2018. url: https://web.archive
.org/web/20190821/https://www.webpagetest.org/ (archived on
2019-08-21).

[AKM04] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. Sizing Router
Buffers. In Proceedings of the Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications (SIG-
COMM ’04), pages 281–292. ACM, 2004. doi: 10.1145/1030194.101
5499.

[ACO+06] Brice Augustin, Xavier Cuvellier, Benjamin Orgogozo, Fabien Viger,
Timur Friedman, Matthieu Latapy, Clémence Magnien, and Renata
Teixeira. Avoiding Traceroute Anomalies with Paris Traceroute. In Pro-
ceedings of the Internet Measurement Conference (IMC ’06), pages 153–
158. ACM, 2006. doi: 10.1145/1177080.1177100.

[BRJ+18] Shehar Bano, Philipp Richter, Mobin Javed, Srikanth Sundaresan, Za-
kir Durumeric, Steven J. Murdoch, Richard Mortier, and Vern Paxson.
Scanning the Internet for Liveness. SIGCOMM Computer Commu-
nication Review (CCR Apr. ’18), 48(2):2–9, ACM, April 2018. doi:
10.1145/3213232.3213234.

[BCL09] Steven Bauer, David D. Clark, and William Lehr. The Evolution
of Internet Congestion. In Proceedings of the Research Conference on
Communication, Information and Internet Policy (TPRC ’09), pages 1–
34. SSRN, 2009. url: http://ssrn.com/abstract=1999830.

[BPT+14] Alex Biryukov, Ivan Pustogarov, Fabrice Thill, and Ralf-Philipp Wein-
mann. Content and Popularity Analysis of Tor Hidden Services. In
Proceedings of the International Conference on Distributed Computing
Systems Workshops (ICDCSW ’14), pages 188–193. IEEE, 2014. doi:
10.1109/ICDCSW.2014.20.

[BPW13] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. Trawling
for Tor Hidden Services: Detection, Measurement, Deanonymization.
In Proceedings of the Symposium on Security and Privacy (S&P ’13),
pages 80–94. IEEE Computer Society, 2013. doi: 10.1109/SP.2013.1
5.

[BG16] Prasenjeet Biswal and Omprakash Gnawali. Does QUIC Make the
Web Faster? In Proceedings of the Global Communications Conference
(GLOBECOM ’16), pages 1–6. IEEE, 2016. doi: 10.1109/GLOCOM.20
16.7841749.

https://datatracker.ietf.org/doc/html/draft-allman-tcpm-no-initwin-00
https://datatracker.ietf.org/doc/html/draft-allman-tcpm-no-initwin-00
https://web.archive.org/web/20190821/https://ip-ranges.amazonaws.com/ip-ranges.json
https://web.archive.org/web/20190821/https://ip-ranges.amazonaws.com/ip-ranges.json
https://web.archive.org/web/20190821/https://www.webpagetest.org/
https://web.archive.org/web/20190821/https://www.webpagetest.org/
https://doi.org/10.1145/1030194.1015499
https://doi.org/10.1145/1030194.1015499
https://doi.org/10.1145/1177080.1177100
https://doi.org/10.1145/3213232.3213234
http://ssrn.com/abstract=1999830
https://doi.org/10.1109/ICDCSW.2014.20
https://doi.org/10.1109/SP.2013.15
https://doi.org/10.1109/SP.2013.15
https://doi.org/10.1109/GLOCOM.2016.7841749
https://doi.org/10.1109/GLOCOM.2016.7841749


Bibliography 215

[BBP+18] Jeremias Blendin, Fabrice Bendfeldt, Ingmar Poese, Boris Koldehofe,
and Oliver Hohlfeld. Dissecting Apple’s Meta-CDN During an iOS
Update. In Proceedings of the Internet Measurement Conference (IMC
’18), pages 408–414. ACM, 2018. doi: 10.1145/3278532.3278567.

[BDM+17] Enrico Bocchi, Luca De Cicco, Marco Mellia, and Dario Rossi. The Web,
the Users, and the MOS: Influence of HTTP/2 on User Experience.
In Proceedings of the Conference on Passive and Active Measurement
(PAM ’17), pages 47–59. Springer, Cham, 2017. doi: 10.1007/978-3-
319-54328-4_4.

[Bor15] Christian Borman. TCP Evolution: Measuring the deployment of the
TCP Evolution. Master’s Thesis, Rheinisch-Westfälische Technische
Hochschule Aachen, December 2015.

[Bra17] Lawrence Brakmo. TCP-BPF: Programmatically tuning TCP behavior
through BPF. In Proceedings of the Technical Conference on Linux
Networking (NetDev 2.2), pages 1–5, 2017. url: https://netdevcon
f.org/2.2/papers/brakmo-tcpbpf-talk.pdf.

[Bri07] Bob Briscoe. Flow Rate Fairness: Dismantling a Religion. SIGCOMM
Computer Communication Review (CCR Mar. ’07), 37(2):63–74, ACM,
March 2007. doi: 10.1145/1232919.1232926.

[BAM11] Jake Brutlag, Zoe Abrams, and Pat Meenan. Above the Fold Time:
Measuring Web Page Performance Visually, March 15, 2011. url:
https://web.archive.org/web/20190910/https://conferences
.oreilly.com/velocity/velocity-mar2011/public/schedule/de
tail/18692 (archived on 2019-09-10).

[CFK+15] Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Mahajan, and
Jitendra Padhye. Analyzing the Performance of an Anycast CDN.
In Proceedings of the Internet Measurement Conference (IMC ’15),
pages 531–537, Tokyo, Japan. ACM, 2015. doi: 10.1145/2815675.28
15717.

[Car17] Neal Cardwell. BBR evaluation with netem, April 23, 2017. url: htt
ps://web.archive.org/web/20190604/https://groups.google.c
om/forum/message/raw?msg=bbr-dev/8LYkNt17V_8/xyZZCwcnAwAJ
(archived on 2019-06-04).

[CCG+16a] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. BBR Congestion Control, November 15,
2016. url: https://www.ietf.org/proceedings/97/slides/s
lides- 97- iccrg- bbr- congestion- control- 02.pdf (visited on
2019-08-06).

[CCG+16b] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. BBR: Congestion-Based Congestion Con-
trol. ACM Queue (QUEUE Sept.-Oct. ’16), 14(5):20–53, ACM, October
2016. doi: 10.1145/3012426.3022184.

https://doi.org/10.1145/3278532.3278567
https://doi.org/10.1007/978-3-319-54328-4_4
https://doi.org/10.1007/978-3-319-54328-4_4
https://netdevconf.org/2.2/papers/brakmo-tcpbpf-talk.pdf
https://netdevconf.org/2.2/papers/brakmo-tcpbpf-talk.pdf
https://doi.org/10.1145/1232919.1232926
https://web.archive.org/web/20190910/https://conferences.oreilly.com/velocity/velocity-mar2011/public/schedule/detail/18692
https://web.archive.org/web/20190910/https://conferences.oreilly.com/velocity/velocity-mar2011/public/schedule/detail/18692
https://web.archive.org/web/20190910/https://conferences.oreilly.com/velocity/velocity-mar2011/public/schedule/detail/18692
https://doi.org/10.1145/2815675.2815717
https://doi.org/10.1145/2815675.2815717
https://web.archive.org/web/20190604/https://groups.google.com/forum/message/raw?msg=bbr-dev/8LYkNt17V_8/xyZZCwcnAwAJ
https://web.archive.org/web/20190604/https://groups.google.com/forum/message/raw?msg=bbr-dev/8LYkNt17V_8/xyZZCwcnAwAJ
https://web.archive.org/web/20190604/https://groups.google.com/forum/message/raw?msg=bbr-dev/8LYkNt17V_8/xyZZCwcnAwAJ
https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf
https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf
https://doi.org/10.1145/3012426.3022184


216 Bibliography

[CCY+17] Neal Cardwell, Yuchung Cheng, Soheil Hassas Yeganeh, and Van Jacob-
son. BBR Congestion Control. Internet-Draft draft-cardwell-iccrg-bbr-
congestion-control-00, Internet Engineering Task Force, July 3, 2017,
pages 1–34. url: https://datatracker.ietf.org/doc/html/draft
-cardwell-iccrg-bbr-congestion-control-00. Work in Progress.

[CSA+18] Esteban Carisimo, Carlos Selmo, J. Ignacio Alvarez-Hamelin, and
Amogh Dhamdhere. Studying the Evolution of Content Providers in the
Internet Core. In Proceedings of the IFIP Network Traffic Measurement
and Analysis Conference (TMA ’18), pages 1–8. IEEE, 2018. doi:
10.23919/TMA.2018.8506513.

[CDM15] Gaetano Carlucci, Luca De Cicco, and Saverio Mascolo. HTTP over
UDP: An Experimental Investigation of QUIC. In Proceedings of the
Symposium on Applied Computing (SAC ’15), pages 609–614. ACM,
2015. doi: 10.1145/2695664.2695706.

[CDN17] CDNPlanet. Initcwnd settings of major CDN providers, February 13,
2017. url: https://web.archive.org/web/20190821/https://www
.cdnplanet.com/blog/initcwnd-settings-major-cdn-providers
/ (archived on 2019-08-21).

[CJ17] Cedexis and Simon Jones. Cedexis Blog: DDoS Attack, May 11, 2017.
url: https://web.archive.org/web/20180929/www.cedexis.com
/blog/ddos-attack-details/ (archived on 2018-09-29).

[CST15] Fangfei Chen, Ramesh K. Sitaraman, and Marcelo Torres. End-User
Mapping: Next Generation Request Routing for Content Delivery. In
Proceedings of the ACM Conference on Special Interest Group on Data
Communication (SIGCOMM ’15), pages 167–181, London, United
Kingdom. ACM, 2015. doi: 10.1145/2785956.2787500.

[CCD+19] Yuchung Cheng, Neal Cardwell, Nandita Dukkipati, and Priyaran-
jan Jha. RACK: a time-based fast loss detection algorithm for TCP.
Internet-Draft draft-ietf-tcpm-rack-05, Internet Engineering Task Force,
May 26, 2019, pages 1–29. url: https://datatracker.ietf.org/do
c/html/draft-ietf-tcpm-rack-05. Work in Progress.

[Chr18a] ChromeDevTools. DevTools Protocol API docs – its domains, methods,
and events, May 17, 2018. url: https://web.archive.org/web/201
80517/https://github.com/ChromeDevTools/debugger-protocol-
viewer (archived on 2018-05-17).

[Chr18b] The Chromium Authors. Add QUIC v44 which will use IETF header
format (4db9ea161624970888d73ed15bf4a38e60ae813c), June 8, 2018.
url: http://web.archive.org/web/20190801/https://chromium
.googlesource.com/chromium/src/+/4db9ea161624970888d73ed1
5bf4a38e60ae813c (archived on 2019-08-01).

https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-00
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-00
https://doi.org/10.23919/TMA.2018.8506513
https://doi.org/10.1145/2695664.2695706
https://web.archive.org/web/20190821/https://www.cdnplanet.com/blog/initcwnd-settings-major-cdn-providers/
https://web.archive.org/web/20190821/https://www.cdnplanet.com/blog/initcwnd-settings-major-cdn-providers/
https://web.archive.org/web/20190821/https://www.cdnplanet.com/blog/initcwnd-settings-major-cdn-providers/
https://web.archive.org/web/20180929/www.cedexis.com/blog/ddos-attack-details/
https://web.archive.org/web/20180929/www.cedexis.com/blog/ddos-attack-details/
https://doi.org/10.1145/2785956.2787500
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rack-05
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rack-05
https://web.archive.org/web/20180517/https://github.com/ChromeDevTools/debugger-protocol-viewer
https://web.archive.org/web/20180517/https://github.com/ChromeDevTools/debugger-protocol-viewer
https://web.archive.org/web/20180517/https://github.com/ChromeDevTools/debugger-protocol-viewer
http://web.archive.org/web/20190801/https://chromium.googlesource.com/chromium/src/+/4db9ea161624970888d73ed15bf4a38e60ae813c
http://web.archive.org/web/20190801/https://chromium.googlesource.com/chromium/src/+/4db9ea161624970888d73ed15bf4a38e60ae813c
http://web.archive.org/web/20190801/https://chromium.googlesource.com/chromium/src/+/4db9ea161624970888d73ed15bf4a38e60ae813c


Bibliography 217

[Chr18c] The Chromium Authors. QUIC v40 Bug: quic_versions.h (929883afba6
805987954c3628a66ae5de9ea9a32) — line 92, September 7, 2018. url:
https://web.archive.org/web/20190801/https://chromium.g
ooglesource.com/chromium/src/+/929883afba6805987954c3628a
66ae5de9ea9a32/net/third_party/quic/core/quic_versions.h
(archived on 2019-08-01).

[Cis08] Cisco Systems, Inc. IP Routing Frequently Asked Questions, April 30,
2008. url: https://web.archive.org/web/20190813/https://www
.cisco.com/c/en/us/support/docs/ip/border-gateway-protoco
l-bgp/28745-44.html (archived on 2019-08-13).

[Cis14] Cisco Systems, Inc. Cisco IOS XRMPLS: mpls ip-ttl-propagate, July 28,
2014. url: https://web.archive.org/web/20190813/https://www
.cisco.com/c/en/us/td/docs/routers/xr12000/software/xr12k
_r4-1/mpls/command/reference/b_mpls_cr41xr12k/b_mpls_cr41
xr12k_chapter_010.html (archived on 2019-08-13).

[Cis16] Cisco Umbrella. Cisco Umbrella List of Top 1M Domains, 2016. url:
https://web.archive.org/web/20190814/http://s3- us- we
st-1.amazonaws.com/umbrella-static/index.html (visited on
2019-08-14).

[Cit18] Citrix Systems, Inc. Cedexis, 2018. url: https://web.archive.org/w
eb/20181026/https://www.cedexis.com/ (archived on 2018-10-26).

[Cle19] Lucas Clemente. quic-go — A QUIC implementation in pure go, July 31,
2019. url: https://web.archive.org/web/20190731/https://git
hub.com/lucas-clemente/quic-go (archived on 2019-07-31).

[Coi17] Coinhive. First Week Status Report, 2017. url: https://web.archive
.org/web/20180515/https://coinhive.com/blog/status-report
(archived on 2018-05-15).

[Coi18] Coinhive. Coinhive – Monero JavaScript Mining, 2018. url: https://w
eb.archive.org/web/20180515/https://coinhive.com/ (archived
on 2018-05-15).

[Con19] Conviva Inc. Video AI Platform – Measurement and analytics for the
next generation of TV | Conviva, 2019. url: https://web.archi
ve.org/web/20190814/https://www.conviva.com/ (archived on
2019-08-14).

[CMT+17] Sarah Cook, Bertrand Mathieu, Patrick Truong, and Isabelle Ham-
chaoui. QUIC: Better For What and For Whom? In Proceedings of the
International Conference on Communications (ICC ’17), pages 1–6.
IEEE, 2017. doi: 10.1109/ICC.2017.7997281.

[Cry18] Crypto-Loot. Crypto-Loot - A Web Browser Miner | Traffic Miner |
CoinHive Alternative, 2018. url: https://web.archive.org/web/20
180515/https://crypto-loot.com/ (archived on 2018-05-15).

https://web.archive.org/web/20190801/https://chromium.googlesource.com/chromium/src/+/929883afba6805987954c3628a66ae5de9ea9a32/net/third_party/quic/core/quic_versions.h
https://web.archive.org/web/20190801/https://chromium.googlesource.com/chromium/src/+/929883afba6805987954c3628a66ae5de9ea9a32/net/third_party/quic/core/quic_versions.h
https://web.archive.org/web/20190801/https://chromium.googlesource.com/chromium/src/+/929883afba6805987954c3628a66ae5de9ea9a32/net/third_party/quic/core/quic_versions.h
https://web.archive.org/web/20190813/https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/28745-44.html
https://web.archive.org/web/20190813/https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/28745-44.html
https://web.archive.org/web/20190813/https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/28745-44.html
https://web.archive.org/web/20190813/https://www.cisco.com/c/en/us/td/docs/routers/xr12000/software/xr12k_r4-1/mpls/command/reference/b_mpls_cr41xr12k/b_mpls_cr41xr12k_chapter_010.html
https://web.archive.org/web/20190813/https://www.cisco.com/c/en/us/td/docs/routers/xr12000/software/xr12k_r4-1/mpls/command/reference/b_mpls_cr41xr12k/b_mpls_cr41xr12k_chapter_010.html
https://web.archive.org/web/20190813/https://www.cisco.com/c/en/us/td/docs/routers/xr12000/software/xr12k_r4-1/mpls/command/reference/b_mpls_cr41xr12k/b_mpls_cr41xr12k_chapter_010.html
https://web.archive.org/web/20190813/https://www.cisco.com/c/en/us/td/docs/routers/xr12000/software/xr12k_r4-1/mpls/command/reference/b_mpls_cr41xr12k/b_mpls_cr41xr12k_chapter_010.html
https://web.archive.org/web/20190814/http://s3-us-west-1.amazonaws.com/umbrella-static/index.html
https://web.archive.org/web/20190814/http://s3-us-west-1.amazonaws.com/umbrella-static/index.html
https://web.archive.org/web/20181026/https://www.cedexis.com/
https://web.archive.org/web/20181026/https://www.cedexis.com/
https://web.archive.org/web/20190731/https://github.com/lucas-clemente/quic-go
https://web.archive.org/web/20190731/https://github.com/lucas-clemente/quic-go
https://web.archive.org/web/20180515/https://coinhive.com/blog/status-report
https://web.archive.org/web/20180515/https://coinhive.com/blog/status-report
https://web.archive.org/web/20180515/https://coinhive.com/
https://web.archive.org/web/20180515/https://coinhive.com/
https://web.archive.org/web/20190814/https://www.conviva.com/
https://web.archive.org/web/20190814/https://www.conviva.com/
https://doi.org/10.1109/ICC.2017.7997281
https://web.archive.org/web/20180515/https://crypto-loot.com/
https://web.archive.org/web/20180515/https://crypto-loot.com/


218 Bibliography

[CFL18] Ana Custura, Gorry Fairhurst, and Iain Learmonth. Exploring usable
Path MTU in the Internet. In Proceedings of the IFIP Network Traffic
Measurement and Analysis Conference (TMA ’18), pages 1–8. IEEE,
2018. doi: 10.23919/TMA.2018.8506538.

[CAZ+14] Jakub Czyz, Mark Allman, Jing Zhang, Scott Iekel-Johnson, Eric Os-
terweil, and Michael Bailey. Measuring IPv6 Adoption. In Proceedings
of the Conference on SIGCOMM (SIGCOMM ’14), pages 87–98. ACM,
2014. doi: 10.1145/2619239.2626295.

[DBK+18] Piet De Vaere, Tobias Bühler, Mirja Kühlewind, and Brian Trammell.
Three Bits Suffice: Explicit Support for Passive Measurement of Internet
Latency in QUIC and TCP. In Proceedings of the Internet Measurement
Conference (IMC ’18), pages 22–28. ACM, 2018. doi: 10.1145/32785
32.3278535.

[Dee98] Steve Deering. ICNP ’98 Keynote: Watching the Waist of the Protocol
Hourglass, October 14, 1998. url: https://www.ieee-icnp.org/199
8/Keynote.ppt (visited on 2019-06-05).

[DeV17] Robert DeVoe. Tombs.io Launches Collaborative Online Game Powered
by Monero Mining, December 19, 2017. url: https://web.archive.o
rg/web/20180516/https://btcmanager.com/tombs-io-launches-
collaborative-online-game-powered-monero-mining/ (archived
on 2018-05-16).

[DCG+18] Amogh Dhamdhere, David D. Clark, Alexander Gamero-Garrido, Matt-
hew Luckie, Ricky K. P. Mok, Gautam Akiwate, Kabir Gogia, Vaibhav
Bajpai, Alex C. Snoeren, and kc claffy. Inferring Persistent Interdomain
Congestion. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM ’18), pages 1–15.
ACM, 2018. doi: 10.1145/3230543.3230549.

[DLH+12] Amogh Dhamdhere, Matthew Luckie, Bradley Huffaker, kc claffy,
Ahmed Elmokashfi, and Emile Aben. Measuring the Deployment of
IPv6: Topology, Routing and Performance. In Proceedings of the Inter-
net Measurement Conference (IMC ’12), pages 537–550. ACM, 2012.
doi: 10.1145/2398776.2398832.

[DSR+10] Prithula Dhungel, Moritz Steiner, Ivica Rimac, Volker Hilt, and Keith
W. Ross. Waiting for Anonymity: Understanding Delays in the Tor
Overlay. In Proceedings of the International Conference on Peer-to-
Peer Computing (P2P ’10), pages 1–4. IEEE, 2010. doi: 10.1109/P2
P.2010.5569995.

[DMP+02] John Dilley, Bruce Maggs, Jay Parikh, Harald Prokop, Ramesh Sitara-
man, and Bill Weihl. Globally Distributed Content Delivery. IEEE
Internet Computing (IC Sep.-Oct. ’02), 6(5):50–58, IEEE, September
2002. doi: 10.1109/MIC.2002.1036038.

https://doi.org/10.23919/TMA.2018.8506538
https://doi.org/10.1145/2619239.2626295
https://doi.org/10.1145/3278532.3278535
https://doi.org/10.1145/3278532.3278535
https://www.ieee-icnp.org/1998/Keynote.ppt
https://www.ieee-icnp.org/1998/Keynote.ppt
https://web.archive.org/web/20180516/https://btcmanager.com/tombs-io-launches-collaborative-online-game-powered-monero-mining/
https://web.archive.org/web/20180516/https://btcmanager.com/tombs-io-launches-collaborative-online-game-powered-monero-mining/
https://web.archive.org/web/20180516/https://btcmanager.com/tombs-io-launches-collaborative-online-game-powered-monero-mining/
https://doi.org/10.1145/3230543.3230549
https://doi.org/10.1145/2398776.2398832
https://doi.org/10.1109/P2P.2010.5569995
https://doi.org/10.1109/P2P.2010.5569995
https://doi.org/10.1109/MIC.2002.1036038


Bibliography 219

[DSA+11] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph,
Aditya Ganjam, Jibin Zhan, and Hui Zhang. Understanding the Impact
of Video Quality on User Engagement. In Proceedings of the SIGCOMM
Conference (SIGCOMM ’11), pages 362–373, Toronto, Ontario, Canada.
ACM, 2011. doi: 10.1145/2018436.2018478.

[DMZ+18] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad,
Brighten Godfrey, and Michael Schapira. PCC Vivace: Online-Learning
Congestion Control. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’18), pages 343–
356. USENIX, 2018. url: https://www.usenix.org/node/211246.

[DLM+12] Benoit Donnet, Matthew Luckie, Pascal Mérindol, and Jean-Jacques
Pansiot. Revealing MPLS Tunnels Obscured from Traceroute. SIG-
COMM Computer Communication Review (CCR Mar. ’12), 42(2):87–
93, ACM, March 2012. doi: 10.1145/2185376.2185388.

[Duk07] Nandita Dukkipati. Rate Control Protocol (RCP): Congestion control
to make flows complete quickly. Ph.D. Thesis, Stanford University,
2007. url: http://yuba.stanford.edu/~nanditad/thesis-Nandit
aD.pdf (visited on 2019-10-29).

[DDM10] Nandita Dukkipati, Eric Dumazet, and David S. Miller. TCP: increase
default initial receive window., December 20, 2010. doi: 10.5281/zen
odo.1246469.

[DRC+10] Nandita Dukkipati, Tiziana Refice, Yuchung Cheng, Jerry Chu, Tom
Herbert, Amit Agarwal, Arvind Jain, and Natalia Sutin. An Argument
for Increasing TCP’s Initial Congestion Window. SIGCOMM Computer
Communication Review (CCR July ’10), 40(3):26–33, ACM, July 2010.
doi: 10.1145/1823844.1823848.

[DLK+14] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro
Beekman, Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson,
Michael Bailey, and J. Alex Halderman. The Matter of Heartbleed.
In Proceedings of the Internet Measurement Conference (IMC ’14),
pages 475–488. ACM, 2014. doi: 10.1145/2663716.2663755.

[DWH13] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. ZMap: Fast
Internet-wide Scanning and Its Security Applications. In Proceedings
of USENIX Conference on Security (USENIX Sec ’13), pages 1–16.
USENIX Association, 2013. url: https://www.usenix.org/confere
nce/usenixsecurity13/technical-sessions/paper/durumeric.

[Edd19] Wesley Eddy. Transmission Control Protocol Specification. Internet-
Draft draft-ietf-tcpm-rfc793bis-13, Internet Engineering Task Force,
June 3, 2019, pages 1–104. url: https://datatracker.ietf.org/do
c/html/draft-ietf-tcpm-rfc793bis-13. Work in Progress.

https://doi.org/10.1145/2018436.2018478
https://www.usenix.org/node/211246
https://doi.org/10.1145/2185376.2185388
http://yuba.stanford.edu/~nanditad/thesis-NanditaD.pdf
http://yuba.stanford.edu/~nanditad/thesis-NanditaD.pdf
https://doi.org/10.5281/zenodo.1246469
https://doi.org/10.5281/zenodo.1246469
https://doi.org/10.1145/1823844.1823848
https://doi.org/10.1145/2663716.2663755
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/durumeric
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/durumeric
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc793bis-13
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc793bis-13


220 Bibliography

[EKT+17] Korian Edeline, Mirja Kühlewind, Brian Trammell, and Benoit Donnet.
Copycat: Testing Differential Treatment of New Transport Protocols in
the Wild. In Proceedings of the Applied Networking Research Workshop
(ANRW ’17), pages 13–19. ACM, 2017. doi: 10.1145/3106328.31063
30.

[EGG+06] Mihaela Enachescu, Yashar Ganjali, Ashish Goel, Nick McKeown, and
Tim Roughgarden. Routers with Very Small Buffers. In Proceedings of
the International Conference on Computer Communications (INFO-
COM ’06), pages 1–11. IEEE, 2006. doi: 10.1109/INFOCOM.2006.240.

[EGR+11] Jeffrey Erman, Alexandre Gerber, K. K. Ramadrishnan, Subhabrata
Sen, and Oliver Spatscheck. Over the Top Video: The Gorilla in Cellular
Networks. In Proceedings of the Internet Measurement Conference (IMC
’11), pages 127–136. ACM, 2011. doi: 10.1145/2068816.2068829.

[ELM+18] Shayan Eskandari, Andreas Leoutsarakos, Troy Mursch, and Jeremy
Clark. A first look at browser-based Cryptojacking. In Proceedings of the
European Symposium on Security and Privacy Workshops (EuroS&PW
’18), pages 58–66. IEEE, 2018. doi: 10.1109/EuroSPW.2018.00014.

[FJT+19] Gorry Fairhurst, Tom Jones, Michael Tüxen, Irene Ruengeler, and Timo
Voelker. Packetization Layer Path MTU Discovery for Datagram Trans-
ports. Internet-Draft draft-ietf-tsvwg-datagram-plpmtud-08, Internet
Engineering Task Force, June 5, 2019, pages 1–41. url: https://t
ools.ietf.org/html/draft-ietf-tsvwg-datagram-plpmtud-08.
Work in Progress.

[Fin89] Gregory G. Finn. A Connectionless Congestion Control Algorithm. SIG-
COMM Computer Communication Review (CCR Oct. ’89), 19(5):12–31,
ACM, October 1989. doi: 10.1145/74681.74683.

[FG14] Marc Fischlin and Felix Günther. Multi-Stage Key Exchange and the
Case of Google’s QUIC Protocol. In Proceedings of the Conference on
Computer and Communications Security (CCS ’14), pages 1193–1204.
ACM, 2014. doi: 10.1145/2660267.2660308.

[FG17] Marc Fischlin and Felix Günther. Replay Attacks on Zero Round-Trip
Time: The Case of the TLS 1.3 Handshake Candidates. In Proceedings
of the European Symposium on Security and Privacy (EuroS&P ’18),
pages 60–75. IEEE, 2017. doi: 10.1109/EuroSP.2017.18.

[FMM+15] Ashley Flavel, Pradeepkumar Mani, David Maltz, Nick Holt, Jie Liu,
Yingying Chen, and Oleg Surmachev. FastRoute: A Scalable Load-
Aware Anycast Routing Architecture for Modern CDNs. In Proceedings
of the USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI ’15), pages 381–394. USENIX Association, 2015.
url: https://www.usenix.org/conference/nsdi15/technical-se
ssions/presentation/flavel.

https://doi.org/10.1145/3106328.3106330
https://doi.org/10.1145/3106328.3106330
https://doi.org/10.1109/INFOCOM.2006.240
https://doi.org/10.1145/2068816.2068829
https://doi.org/10.1109/EuroSPW.2018.00014
https://tools.ietf.org/html/draft-ietf-tsvwg-datagram-plpmtud-08
https://tools.ietf.org/html/draft-ietf-tsvwg-datagram-plpmtud-08
https://doi.org/10.1145/74681.74683
https://doi.org/10.1145/2660267.2660308
https://doi.org/10.1109/EuroSP.2017.18
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/flavel
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/flavel


Bibliography 221

[FKB16] Marcel Flores, Amir R. Khakpour, and Harkeerat Bedi. Riptide: Jump-
Starting Back-Office Connections in Cloud Systems. In Proceedings
of the International Conference on Distributed Computing Systems
(ICDCS ’16), pages 78–87. IEEE, 2016. doi: 10.1109/ICDCS.2016.47
.

[Flo94] Sally Floyd. TCP and Explicit Congestion Notification. SIGCOMM
Computer Communication Review (CCR Oct. ’94), 24(5):8–23, ACM,
October 1994. doi: 10.1145/205511.205512.

[FJ93] Sally Floyd and Van Jacobson. Random Early Detection Gateways for
Congestion Avoidance. IEEE/ACM Transactions on Networking (ToN
Aug. ’93), 1(4):397–413, IEEE Press, August 1993. doi: 10.1109/90.2
51892.

[FK03] Sally Floyd and Eddie Kohler. Internet Research Needs Better Mod-
els. SIGCOMM Computer Communication Review (CCR Jan. ’03),
33(1):29–34, ACM, January 2003. doi: 10.1145/774763.774767.

[FB07] Pierre Francois and Olivier Bonaventure. Avoiding Transient Loops
During the Convergence of Link-State Routing Protocols. IEEE/ACM
Transactions on Networking (ToN Dec. ’07), 15(6):1280–1292, IEEE
Press, December 2007. doi: 10.1109/TNET.2007.902686.

[FPL+13] Benjamin Frank, Ingmar Poese, Yin Lin, Georgios Smaragdakis, Anja
Feldmann, Bruce Maggs, Jannis Rake, Steve Uhlig, and Rick Weber.
Pushing CDN-ISP collaboration to the limit. SIGCOMM Computer
Communication Review (CCR July ’13), 43(3):34–44, ACM, July 2013.
doi: 10.1145/2500098.2500103.

[GM06] Yashar Ganjali and Nick McKeown. Update on Buffer Sizing in Internet
Routers. SIGCOMM Computer Communication Review (CCR Oct. 06),
36(5):67–70, ACM, October 2006. doi: 10.1145/1163593.1163605.

[GDA17] Qingzhu Gao, Prasenjit Dey, and Parvez Ahammad. Perceived Perfor-
mance of Top Retail Webpages In the Wild: Insights from Large-scale
Crowdsourcing of Above-the-Fold QoE. In Proceedings of the Work-
shop on QoE-based Analysis and Management of Data Communication
Networks (Internet QoE ’17), pages 13–18. ACM, 2017. doi: 10.1145
/3098603.3098606.

[GSG+16] Oliver Gasser, Quirin Scheitle, Sebastian Gebhard, and Georg Carle.
Scanning the IPv6 Internet: Towards a Comprehensive Hitlist. In Pro-
ceedings of International Workshop on Traffic Monitoring and Analysis
(TMA ’16), pages 1–9. IFIP, 2016. url: https://tma.ifip.org/201
6/papers/tma2016-final51.pdf (visited on 2019-10-15).

[GD11] Alexandre Gerber and Robert Doverspike. Traffic Types and Growth in
Backbone Networks. In Proceedings of the Optical Fiber Communication
Conference and Exposition and the National Fiber Optic Engineers
Conference (OFC/NFOEC ’11), pages 1–3. IEEE, 2011. url: https:
//ieeexplore.ieee.org/document/5875624.

https://doi.org/10.1109/ICDCS.2016.47
https://doi.org/10.1109/ICDCS.2016.47
https://doi.org/10.1145/205511.205512
https://doi.org/10.1109/90.251892
https://doi.org/10.1109/90.251892
https://doi.org/10.1145/774763.774767
https://doi.org/10.1109/TNET.2007.902686
https://doi.org/10.1145/2500098.2500103
https://doi.org/10.1145/1163593.1163605
https://doi.org/10.1145/3098603.3098606
https://doi.org/10.1145/3098603.3098606
https://tma.ifip.org/2016/papers/tma2016-final51.pdf
https://tma.ifip.org/2016/papers/tma2016-final51.pdf
https://ieeexplore.ieee.org/document/5875624
https://ieeexplore.ieee.org/document/5875624


222 Bibliography

[GN12] Jim Gettys and Kathleen Nichols. Bufferbloat: Dark Buffers in the
Internet. Communications of the ACM (CACM Jan. ’12), 55(1):57–65,
ACM, January 2012. doi: 10.1145/2063176.2063196.

[GAL+08] Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Mahanti. The
Flattening Internet Topology: Natural Evolution, Unsightly Barnacles
or Contrived Collapse? In Proceedings of the Conference on Passive
and Active Measurement (PAM ’08), pages 1–10. Springer, Berlin,
Heidelberg, 2008. doi: 10.1007/978-3-540-79232-1_1.

[Gil02] Stephen Gill. ICMP redirects are ba’ad, mkay? Version 1.1, Team
Cymru, Inc., July 23, 2002. url: https://www.cymru.com/gillsr/d
ocuments/icmp-redirects-are-bad.pdf (visited on 2019-08-13).

[Goo18] Google. WebPagetest CDN domain list, cdn.h, January 30, 2018. url:
https://web.archive.org/web/20190821/https://github.com
/WPO-Foundation/webpagetest/blob/18.10/agent/wpthook/cdn
.h (archived on 2019-08-21).

[Goo19a] Google. Google IPv6 Adoption Statistics, August 11, 2019. url: http
s://web.archive.org/web/20190813/https://www.google.com/i
ntl/en/ipv6/statistics.html (archived on 2019-08-13).

[Goo19b] Google. WebPagetest Documentation: Speed Index, August 29, 2019.
url: https://web.archive.org/web/20190910/https://sites.go
ogle.com/a/webpagetest.org/docs/using-webpagetest/metrics
/speed-index (archived on 2019-09-10).

[Goo19c] The Google BBR team. BBR Startup Gain: a Derivation, February 1,
2019. url: https://github.com/google/bbr/blob/master/Docume
ntation/startup/gain/analysis/bbr_startup_gain.pdf (visited
on 2019-07-31).

[Gra19] Robert Graham. MASSCAN: Mass IP port scanner, May 22, 2019.
url: https://web.archive.org/web/20190821/https://github.c
om/robertdavidgraham/masscan (archived on 2019-08-21).

[Gua17a] The Guardian. Ads don’t work so websites are using your electricity to
pay the bills, September 27, 2017. url: https://web.archive.org/w
eb/20180515/https://www.theguardian.com/technology/2017/s
ep/27/pirate-bay-showtime-ads-websites-electricity-pay-bi
lls-cryptocurrency-bitcoin (archived on 2018-05-15).

[Gua17b] The Guardian. Billions of video site visitors unwittingly mine cryp-
tocurrency as they watch, December 13, 2017. url: https://web.arc
hive.org/web/20180516/https://www.theguardian.com/technol
ogy/2017/dec/13/video-site-visitors-unwittingly-mine-cryp
tocurrency-as-they-watch-report-openload-streamango-rapid
video-onlinevideoconverter-monero (archived on 2018-05-16).

[GH18] Hang Guo and John Heidemann. Detecting ICMP Rate Limiting in
the Internet. In Proceedings of the Conference on Passive and Active
Measurement (PAM ’18), pages 3–17. Springer, Cham, 2018. doi:
10.1007/978-3-319-76481-8_1.

https://doi.org/10.1145/2063176.2063196
https://doi.org/10.1007/978-3-540-79232-1_1
https://www.cymru.com/gillsr/documents/icmp-redirects-are-bad.pdf
https://www.cymru.com/gillsr/documents/icmp-redirects-are-bad.pdf
https://web.archive.org/web/20190821/https://github.com/WPO-Foundation/webpagetest/blob/18.10/agent/wpthook/cdn.h
https://web.archive.org/web/20190821/https://github.com/WPO-Foundation/webpagetest/blob/18.10/agent/wpthook/cdn.h
https://web.archive.org/web/20190821/https://github.com/WPO-Foundation/webpagetest/blob/18.10/agent/wpthook/cdn.h
https://web.archive.org/web/20190813/https://www.google.com/intl/en/ipv6/statistics.html
https://web.archive.org/web/20190813/https://www.google.com/intl/en/ipv6/statistics.html
https://web.archive.org/web/20190813/https://www.google.com/intl/en/ipv6/statistics.html
https://web.archive.org/web/20190910/https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://web.archive.org/web/20190910/https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://web.archive.org/web/20190910/https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://github.com/google/bbr/blob/master/Documentation/startup/gain/analysis/bbr_startup_gain.pdf
https://github.com/google/bbr/blob/master/Documentation/startup/gain/analysis/bbr_startup_gain.pdf
https://web.archive.org/web/20190821/https://github.com/robertdavidgraham/masscan
https://web.archive.org/web/20190821/https://github.com/robertdavidgraham/masscan
https://web.archive.org/web/20180515/https://www.theguardian.com/technology/2017/sep/27/pirate-bay-showtime-ads-websites-electricity-pay-bills-cryptocurrency-bitcoin
https://web.archive.org/web/20180515/https://www.theguardian.com/technology/2017/sep/27/pirate-bay-showtime-ads-websites-electricity-pay-bills-cryptocurrency-bitcoin
https://web.archive.org/web/20180515/https://www.theguardian.com/technology/2017/sep/27/pirate-bay-showtime-ads-websites-electricity-pay-bills-cryptocurrency-bitcoin
https://web.archive.org/web/20180515/https://www.theguardian.com/technology/2017/sep/27/pirate-bay-showtime-ads-websites-electricity-pay-bills-cryptocurrency-bitcoin
https://web.archive.org/web/20180516/https://www.theguardian.com/technology/2017/dec/13/video-site-visitors-unwittingly-mine-cryptocurrency-as-they-watch-report-openload-streamango-rapidvideo-onlinevideoconverter-monero
https://web.archive.org/web/20180516/https://www.theguardian.com/technology/2017/dec/13/video-site-visitors-unwittingly-mine-cryptocurrency-as-they-watch-report-openload-streamango-rapidvideo-onlinevideoconverter-monero
https://web.archive.org/web/20180516/https://www.theguardian.com/technology/2017/dec/13/video-site-visitors-unwittingly-mine-cryptocurrency-as-they-watch-report-openload-streamango-rapidvideo-onlinevideoconverter-monero
https://web.archive.org/web/20180516/https://www.theguardian.com/technology/2017/dec/13/video-site-visitors-unwittingly-mine-cryptocurrency-as-they-watch-report-openload-streamango-rapidvideo-onlinevideoconverter-monero
https://web.archive.org/web/20180516/https://www.theguardian.com/technology/2017/dec/13/video-site-visitors-unwittingly-mine-cryptocurrency-as-they-watch-report-openload-streamango-rapidvideo-onlinevideoconverter-monero
https://doi.org/10.1007/978-3-319-76481-8_1


Bibliography 223

[GOR+19] Dennis Guse, Henrique R. Orefice, Gabriel Reimers, and Oliver Hohlfeld.
TheFragebogen: A Web Browser-based Questionnaire Framework for
Scientific Research. In Proceedings of the International Conference on
Quality of Multimedia Experience (QoMEX ’19), pages 1–3. IEEE, 2019.
doi: 10.1109/QoMEX.2019.8743231.

[HR08] Sangtae Ha and Injong Rhee. Hybrid Slow Start for High-Bandwidth
and Long-Distance Networks. In Protocols for Fast, Long Distance
Networks Workshop (PFLDnet ’08), pages 1–6, 2008. url: https://p
dfs.semanticscholar.org/25e9/ef3f03315782c7f1cbcd31b58785
7adae7d1.pdf (visited on 2019-08-21).

[HRX08] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC : A New TCP-
Friendly High-Speed TCP Variant. SIGOPS Operating Systems Review
- Research and developments in the Linux kernel (Oper. Syst. Rev.
July ’08), 42(5):64–74, ACM, July 2008. doi: 10.1145/1400097.1400
105.

[Han06] Mark Handley. Why the Internet only just works. BT Technology
Journal (BT Technol J), 24(3):119–129, Kluwer Academic Publishers-
Consultants Bureau, July 2006. doi: 10.1007/s10550-006-0084-z.

[HNE+10] Seppo Hätönen, Aki Nyrhinen, Lars Eggert, Stephen Strowes, Pasi
Sarolahti, and Markku Kojo. An Experimental Study of Home Gateway
Characteristics. In Proceedings of the Internet Measurement Conference
(IMC ’10), pages 260–266. ACM, 2010. doi: 10.1145/1879141.18791
74.

[HMM+02] Urs Hengartner, Sue Moon, Richard Mortier, and Christophe Diot.
Detection and Analysis of Routing Loops in Packet Traces. In Pro-
ceedings of the SIGCOMM Workshop on Internet Measurement (IMW
’02), pages 107–112. ACM, 2002. doi: 10.1145/637201.637217.

[Hew10] Hewlett Packard. HP-UX - Serviceguard A.11.19 on HP-UX 11.31:
Source Quench Seen for Every IPMON Ping, 2010. url: https://w
eb.archive.org/web/20190813/https://support.hpe.com/hp
sc/doc/public/display?docId=emr_na-c02190964 (archived on
2019-08-13).

[HBZ17] Mario Hock, Roland Bless, and Martina Zitterbart. Experimental Eval-
uation of BBR Congestion Control. In Proceedings of the International
Conference on Network Protocols (ICNP ’17), pages 1–10. IEEE, 2017.
doi: 10.1109/ICNP.2017.8117540.

[HPC+14] Oliver Hohlfeld, Enric Pujol, Florin Ciucu, Anja Feldmann, and Paul
Barford. A QoE Perspective on Sizing Network Buffers. In Proceedings
of the Internet Measurement Conference (IMC ’14), pages 333–346.
ACM, 2014. doi: 10.1145/2663716.2663730.

[HRW+18] Oliver Hohlfeld, Jan Rüth, Konrad Wolsing, and Torsten Zimmermann.
Characterizing a Meta-CDN. In Proceedings of the Conference on
Passive and Active Measurement (PAM ’18), pages 114–128. Springer,
Cham, 2018. doi: 10.1007/978-3-319-76481-8_9.

https://doi.org/10.1109/QoMEX.2019.8743231
https://pdfs.semanticscholar.org/25e9/ef3f03315782c7f1cbcd31b587857adae7d1.pdf
https://pdfs.semanticscholar.org/25e9/ef3f03315782c7f1cbcd31b587857adae7d1.pdf
https://pdfs.semanticscholar.org/25e9/ef3f03315782c7f1cbcd31b587857adae7d1.pdf
https://doi.org/10.1145/1400097.1400105
https://doi.org/10.1145/1400097.1400105
https://doi.org/10.1007/s10550-006-0084-z
https://doi.org/10.1145/1879141.1879174
https://doi.org/10.1145/1879141.1879174
https://doi.org/10.1145/637201.637217
https://web.archive.org/web/20190813/https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c02190964
https://web.archive.org/web/20190813/https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c02190964
https://web.archive.org/web/20190813/https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c02190964
https://doi.org/10.1109/ICNP.2017.8117540
https://doi.org/10.1145/2663716.2663730
https://doi.org/10.1007/978-3-319-76481-8_9


224 Bibliography

[HLA18] Matthew Holt, Light Code Labs, and Ardan Labs. Caddy - The
HTTP/2 Web Server with Automatic HTTPS, 2018. url: https:
//web.archive.org/web/20190801/https://caddyserver.com/
(archived on 2019-08-01).

[HHA+20] Ralph Holz, Jens Hiller, Johanna Amann, Abbas Razaghpanah, Thomas
Jost, Narseo Vallina-Rodriguez, and Oliver Hohlfeld. Tracking the
Deployment of TLS 1.3 on the Web: A Story of Experimentation and
Centralization. SIGCOMM Computer Communication Review (CCR
July ’20), 50(3):3–15, ACM, July 2020. doi: 10.1145/3411740.34117
42.

[Hos18] Hosh (hoshsadiq). Github: Block lists to prevent JavaScript miners,
May 17, 2018. url: https://web.archive.org/web/20180517/htt
ps://github.com/hoshsadiq/adblock-nocoin-list (archived on
2018-05-17).

[HKH+14] Tobias Hoßfeld, Christian Keimel, Matthias Hirth, Bruno Gardlo, Ju-
lian Habigt, Klaus Diepold, and Phuoc Tran-Gia. Best Practices for
QoE Crowdtesting: QoE Assessment With Crowdsourcing. IEEE Trans-
actions on Multimedia (TMM Feb. ’14), 16(2):541–558, IEEE, February
2014. doi: 10.1109/TMM.2013.2291663.

[IET17a] The IETF Community. Interim June 2017 Minutes on: Packet Number
Echo PR#269, June 7, 2017. url: https://web.archive.org/web/2
0190801/https://github.com/quicwg/wg-materials/blob/maste
r/interim-17-06/minutes.md/ (archived on 2019-08-01).

[IET19] The IETF Community. Applications Doing DNS (add) – Group History,
2019. url: https://web.archive.org/web/20190918/https://dat
atracker.ietf.org/wg/add/history/ (archived on 2019-09-18).

[IET17b] The IETF QUIC Working Group. Charter for Working Group, Febru-
ary 27, 2017. url: https://datatracker.ietf.org/wg/quic/about/
(visited on 2019-07-31).

[ITU03] ITU. Subjective quality evaluation of telephone services based on
spoken dialogue systems. ITU-T Recommendation P.851, 2003. url:
https://www.itu.int/rec/T-REC-P.851/en (visited on 2019-09-10).

[Iye15] Jana Iyengar. IETF93 QUIC BarBoF: Protocol Overview, July 22,
2015. url: https://web.archive.org/web/20190819/https://doc
s.google.com/presentation/d/15e1bLKYeN56GL1oTJSF9OZiUsI-r
cxisLo9dEyDkWQs/edit (archived on 2019-08-19).

[Iye19] Jana Iyengar. QUIC Tutorial @ netdev 0x13, May 20, 2019. url: http
s://netdevconf.org/0x13/session.html?tutorial-QUIC (visited
on 2019-07-14). Video available at: https://youtu.be/CtsBawwGwns.

[IT19] Jana Iyengar and Martin Thomson. QUIC: A UDP-Based Multiplexed
and Secure Transport. Internet-Draft draft-ietf-quic-transport-22, Inter-
net Engineering Task Force, July 9, 2019, pages 1–148. url: https://d
atatracker.ietf.org/doc/html/draft-ietf-quic-transport-22.
Work in Progress.

https://web.archive.org/web/20190801/https://caddyserver.com/
https://web.archive.org/web/20190801/https://caddyserver.com/
https://doi.org/10.1145/3411740.3411742
https://doi.org/10.1145/3411740.3411742
https://web.archive.org/web/20180517/https://github.com/hoshsadiq/adblock-nocoin-list
https://web.archive.org/web/20180517/https://github.com/hoshsadiq/adblock-nocoin-list
https://doi.org/10.1109/TMM.2013.2291663
https://web.archive.org/web/20190801/https://github.com/quicwg/wg-materials/blob/master/interim-17-06/minutes.md/
https://web.archive.org/web/20190801/https://github.com/quicwg/wg-materials/blob/master/interim-17-06/minutes.md/
https://web.archive.org/web/20190801/https://github.com/quicwg/wg-materials/blob/master/interim-17-06/minutes.md/
https://web.archive.org/web/20190918/https://datatracker.ietf.org/wg/add/history/
https://web.archive.org/web/20190918/https://datatracker.ietf.org/wg/add/history/
https://datatracker.ietf.org/wg/quic/about/
https://www.itu.int/rec/T-REC-P.851/en
https://web.archive.org/web/20190819/https://docs.google.com/presentation/d/15e1bLKYeN56GL1oTJSF9OZiUsI-rcxisLo9dEyDkWQs/edit
https://web.archive.org/web/20190819/https://docs.google.com/presentation/d/15e1bLKYeN56GL1oTJSF9OZiUsI-rcxisLo9dEyDkWQs/edit
https://web.archive.org/web/20190819/https://docs.google.com/presentation/d/15e1bLKYeN56GL1oTJSF9OZiUsI-rcxisLo9dEyDkWQs/edit
https://netdevconf.org/0x13/session.html?tutorial-QUIC
https://netdevconf.org/0x13/session.html?tutorial-QUIC
https://youtu.be/CtsBawwGwns
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-22
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-22


Bibliography 225

[Jac88] Van Jacobson. Congestion Avoidance and Control. In Proceedings of
the Symposium on Communications Architectures and Protocols (SIG-
COMM ’88), pages 314–329. ACM, 1988. doi: 10.1145/52324.52356.

[Jac90] Van Jacobson. Modified TCP Congestion Control and Avoidance Al-
gorithms. Mailing List Conversation end2end-interest, April 30, 1990.
url: ftp://ftp.ee.lbl.gov/email/vanj.90apr30.txt (visited on
2019-08-19).

[Jac06] Van Jacobson. A Rant on Queues, July 26, 2006. url: http://www.p
ollere.net/Pdfdocs/QrantJul06.pdf (visited on 2019-07-18). Talk
at MIT Lincoln Labs, Lexington, MA.

[JSS15] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. On the Security of
TLS 1.3 and QUIC Against Weaknesses in PKCS#1 V1.5 Encryption.
In Proceedings of the Conference on Computer and Communications
Security (CCS ’15), pages 1185–1196. ACM, 2015. doi: 10.1145/2810
103.2813657.

[Joh75] Donald B. Johnson. Finding All the Elementary Circuits of a Di-
rected Graph. Journal on Computing (J. Comput. Mar. ’75), 4(1):77–
84, SIAM, March 1975. doi: 10.1137/0204007.

[Jun17] Juniper Networks, Inc. no-propagate-ttl - TechLibrary - Juniper Net-
works, June 27, 2017. url: https://web.archive.org/web/2019081
3/https://www.juniper.net/documentation/en_US/junos/topic
s/reference/configuration-statement/no-propagate-ttl-edit
-protocols-mpls.html (archived on 2019-08-13).

[KJC+17] Arash Molavi Kakhki, Samuel Jero, David Choffnes, Alan Mislove, and
Cristina Nita-Rotaru. Taking a Long Look at QUIC: An Approach
for Rigorous Evaluation of Rapidly Evolving Transport Protocols.
In Proceedings of the Internet Measurement Conference (IMC ’17),
pages 290–303. ACM, 2017. doi: 10.1145/3131365.3131368.

[KGP+09] Elliott Karpilovsky, Alexandre Gerber, Dan Pei, Jennifer Rexford,
and Aman Shaikh. Quantifying the Extent of IPv6 Deployment. In
Proceedings of the Conference on Passive and Active Measurement
(PAM ’09), pages 13–22. Springer Berlin Heidelberg, 2009. doi: 10.10
07/978-3-642-00975-4_2.

[KRB+17] Conor Kelton, Jihoon Ryoo, Aruna Balasubramanian, and Samir R.
Das. Improving User Perceived Page Load Times Using Gaze. In Pro-
ceedings of the USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’17), pages 545–559. USENIX Association,
2017. url: https://www.usenix.org/conference/nsdi17/technic
al-sessions/presentation/kelton.

[Kle10] Leonard Kleinrock. An early history of the internet [History of Com-
munications]. IEEE Communications Magazine (ComMag Aug. ’10),
48(8):26–36, IEEE, August 2010. doi: 10.1109/MCOM.2010.5534584.

https://doi.org/10.1145/52324.52356
ftp://ftp.ee.lbl.gov/email/vanj.90apr30.txt
http://www.pollere.net/Pdfdocs/QrantJul06.pdf
http://www.pollere.net/Pdfdocs/QrantJul06.pdf
https://doi.org/10.1145/2810103.2813657
https://doi.org/10.1145/2810103.2813657
https://doi.org/10.1137/0204007
https://web.archive.org/web/20190813/https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/no-propagate-ttl-edit-protocols-mpls.html
https://web.archive.org/web/20190813/https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/no-propagate-ttl-edit-protocols-mpls.html
https://web.archive.org/web/20190813/https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/no-propagate-ttl-edit-protocols-mpls.html
https://web.archive.org/web/20190813/https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/no-propagate-ttl-edit-protocols-mpls.html
https://doi.org/10.1145/3131365.3131368
https://doi.org/10.1007/978-3-642-00975-4_2
https://doi.org/10.1007/978-3-642-00975-4_2
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kelton
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kelton
https://doi.org/10.1109/MCOM.2010.5534584


226 Bibliography

[KVM+18] Radhesh Krishnan Konoth, Emanuele Vineti, Veelasha Moonsamy,
Martina Lindorfer, Christopher Kruegel, Herbert Bos, and Giovanni
Vigna. MineSweeper: An In-depth Look into Drive-by Cryptocurrency
Mining and Its Defense. In Proceedings of the Conference on Computer
and Communications Security (CCS ’18), pages 1714–1730. ACM, 2018.
doi: 10.1145/3243734.3243858.

[Kru19] Marijn Kruisselbrink. Native File System. Draft Community Group
Report, July 25, 2019. url: https://web.archive.org/web/20
190827061944/https://wicg.github.io/native-file-system/
(archived on 2019-08-27).

[KBT+17] Mirja Kühlewind, Tobias Bühler, Brian Trammell, Stephan Neuhaus,
Roman Müntener, and Gorry Fairhurst. A Path Layer for the Internet:
Enabling Network Operations on Encrypted Protocols. In Proceedings
of the International Conference on Network and Service Management
(CNSM ’17), pages 1–9. IEEE, 2017. doi: 10.23919/CNSM.2017.8255
973.

[Kun18] Ike Kunze. How Fair Is The Internet? Investigating Bottleneck And
Connection Characteristics. Master’s Thesis, Rheinisch-Westfälische
Technische Hochschule Aachen, September 2018.

[LIM+10] Craig Labovitz, Scott Iekel-Johnson, Danny McPherson, Jon Oberheide,
and Farnam Jahanian. Internet Inter-domain Traffic. In Proceedings
of the SIGCOMM Conference (SIGCOMM ’10), pages 75–86. ACM,
2010. doi: 10.1145/1851182.1851194.

[LRW+17] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles
Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan
Iyengar, Jeff Bailey, Jeremy Dorfman, Jim Roskind, Joanna Kulik,
Patrik Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton, Victor
Vasiliev, Wan-Teh Chang, and Zhongyi Shi. The QUIC Transport
Protocol: Design and Internet-Scale Deployment. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM ’17), pages 183–196. ACM, 2017. doi: 10.1145/3098822
.3098842.

[LHM10] Bob Lantz, Brandon Heller, and Nick McKeown. A Network in a Laptop:
Rapid Prototyping for Software-defined Networks. In Proceedings of
the SIGCOMM Workshop on Hot Topics in Networks (HOTNETS IX),
pages 1–19. ACM, 2010. doi: 10.1145/1868447.1868466.

[LBB+19] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine.
Browser Fingerprinting: A survey. arXiv ePrint 1905.01051, 2019,
pages 1–29. url: https://arxiv.org/abs/1905.01051.

[LCC+09] Barry M. Leiner, Vinton G. Cerf, David D. Clark, Robert E. Kahn,
Leonard Kleinrock, Daniel C. Lynch, Jon Postel, Larry G. Roberts, and
Stephen Wolff. A Brief History of the Internet. SIGCOMM Computer
Communication Review (CCR Oct. 09), 39(5):22–31, ACM, October
2009. doi: 10.1145/1629607.1629613.

https://doi.org/10.1145/3243734.3243858
https://web.archive.org/web/20190827061944/https://wicg.github.io/native-file-system/
https://web.archive.org/web/20190827061944/https://wicg.github.io/native-file-system/
https://doi.org/10.23919/CNSM.2017.8255973
https://doi.org/10.23919/CNSM.2017.8255973
https://doi.org/10.1145/1851182.1851194
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.1145/1868447.1868466
https://arxiv.org/abs/1905.01051
https://doi.org/10.1145/1629607.1629613


Bibliography 227

[LSM07] Douglas J. Leith, Robert N. Shorten, and Gavin McCullagh. Experi-
mental evaluation of Cubic-TCP. In Proceedings of the Workshop on
Protocols for Fast Long-Distance Networks (PFLDNet ’07), pages 1–9,
2007. url: https://www.hamilton.ie/net/pfldnet2007_cubic_fi
nal.pdf (visited on 2019-08-21).

[LNC+19] Fangfan Li, Arian Akhavan Niaki, David Choffnes, Phillipa Gill, and
Alan Mislove. A Large-scale Analysis of Deployed Traffic Differentiation
Practices. In Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM ’19), pages 130–144. ACM, 2019. doi:
10.1145/3341302.3342092.

[Lin06] Greg Linden. Marissa Mayer at Web 2.0, November 9, 2006. url:
https://web.archive.org/web/20190603/http://glinden.blog
spot.com/2006/11/marissa-mayer-at-web-20.html (archived on
2019-06-03).

[Lit17] LiteSpeed Technologies Inc. LiteSpeed — Release Log, June 12, 2017.
url: https://web.archive.org/web/20190731/https://www.lite
speedtech.com/products/litespeed-web-server/release-log-a
rchive (visited on 2019-07-31).

[LAJ+07] Dan Liu, Mark Allman, Shudong Jin, and Limin Wang. Congestion
Control Without a Startup Phase. In Protocols for Fast, Long Distance
Networks Workshop (PFLDnet ’07), pages 61–66, 2007. url: http
s://www.icir.org/mallman/papers/jumpstart-pfldnet07.pdf
(visited on 2019-08-21).

[LWY+12] Hongqiang Harry Liu, Ye Wang, Yang Richard Yang, Hao Wang, and
Chen Tian. Optimizing Cost and Performance for Content Multihoming.
In Proceedings of the Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication (SIGCOMM
’12), pages 371–382. ACM, 2012. doi: 10.1145/2342356.2342432.

[Löb18] Alexander Löbel. Measuring TCP Initial Windows of Content Deliv-
ery Networks. Bachelor’s Thesis, Rheinisch-Westfälische Technische
Hochschule Aachen, June 2018.

[LLK+17] Qasim Lone, Matthew Luckie, Maciej Korczyński, and Michel van Eeten.
Using Loops Observed in Traceroute to Infer the Ability to Spoof. In
Proceedings of the Conference on Passive and Active Measurement
(PAM ’17), pages 229–241. Springer, Cham, 2017. doi: 10.1007/978-
3-319-54328-4_17.

[LJB+15] Robert Lychev, Samuel Jero, Alexandra Boldyreva, and Christina
Nita-Rotaru. How Secure and Quick is QUIC? Provable Security and
Performance Analyses. In Proceedings of the Symposium on Security
and Privacy (S&P ’15), pages 214–231. IEEE, 2015. doi: 10.1109
/SP.2015.21.

https://www.hamilton.ie/net/pfldnet2007_cubic_final.pdf
https://www.hamilton.ie/net/pfldnet2007_cubic_final.pdf
https://doi.org/10.1145/3341302.3342092
https://web.archive.org/web/20190603/http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
https://web.archive.org/web/20190603/http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
https://web.archive.org/web/20190731/https://www.litespeedtech.com/products/litespeed-web-server/release-log-archive
https://web.archive.org/web/20190731/https://www.litespeedtech.com/products/litespeed-web-server/release-log-archive
https://web.archive.org/web/20190731/https://www.litespeedtech.com/products/litespeed-web-server/release-log-archive
https://www.icir.org/mallman/papers/jumpstart-pfldnet07.pdf
https://www.icir.org/mallman/papers/jumpstart-pfldnet07.pdf
https://doi.org/10.1145/2342356.2342432
https://doi.org/10.1007/978-3-319-54328-4_17
https://doi.org/10.1007/978-3-319-54328-4_17
https://doi.org/10.1109/SP.2015.21
https://doi.org/10.1109/SP.2015.21


228 Bibliography

[MJW+17] Shiyao Ma, Jingjie Jiang, Wei Wang, and Bo Li. Fairness of Congestion-
Based Congestion Control: Experimental Evaluation and Analysis.
arXiv ePrint 1706.09115v2, 2017, pages 1–11. url: http://arxiv.or
g/abs/1706.09115v2.

[Mai19] Patrick Maigron. Regional Internet Registries Statistics — World –
Autonomous System Number statistics, April 26, 2019. url: https:
//web.archive.org/web/20190505/https://www-public.imtbs-
tsp.eu/~maigron/RIR_Stats/RIR_Delegations/ByRIR/Stats-By
RIR.html (archived on 2019-05-05).

[ML07] David Malone and Matthew Luckie. Analysis of ICMP Quotations.
In Proceedings of the Conference on Passive and Active Measurement
(PAM ’07), pages 228–232. Springer, Berlin, Heidelberg, 2007. doi:
10.1007/978-3-540-71617-4_24.

[MAW18] MAWI Working Group Traffic Archive. Packet traces from WIDE
backbone, 2018. url: https://web.archive.org/web/20190604/ht
tp://mawi.nezu.wide.ad.jp/mawi/ (archived on 2019-06-04).

[MPF16] Stephen McQuistin, Colin Perkins, and Marwan Fayed. TCP Holly-
wood: An Unordered, Time-Lined, TCP for Networked Multimedia
Applications. In Proceedings of the IFIP Networking Conference (NET-
WORKING ’16), pages 422–430. IFIP, 2016. doi: 10.1109/IFIPNetw
orking.2016.7497221.

[MAF05] Alberto Medina, Mark Allman, and Sally Floyd. Measuring the Evo-
lution of Transport Protocols in the Internet. SIGCOMM Computer
Communication Review (CCR Apr. ’05), 35(2):37–52, ACM, April 2005.
doi: 10.1145/1064413.1064418.

[MKM16] Péter Megyesi, Zsolt Krämer, and Sándor Molnár. How quick is QUIC?
In Proceedings of the International Conference on Communications
(ICC ’16), pages 1–6. IEEE, 2016. doi: 10.1109/ICC.2016.7510788.

[Mic19] Microworkers.com. The Microworker Platform, 2019. url: https://w
eb.archive.org/web/20190910/https://www.microworkers.com/
(archived on 2019-09-10).

[MBB08] Dimitrios Miras, Martin Bateman, and Saleem Bhatti. Fairness of
High-Speed TCP Stacks. In Proceedings of the International Conference
on Advanced Information Networking and Applications (AINA ’08),
pages 84–92. IEEE, 2008. doi: 10.1109/AINA.2008.143.

[Mon18] The Monero Project. Monero - secure, private, untraceable, 2018. url:
https://web.archive.org/web/20180517/https://getmonero.or
g (archived on 2018-05-17).

[Moz18] Mozilla. Internet Health Report – Google dominates browser market,
2018. url: http://web.archive.org/web/20190917/https://inte
rnethealthreport.org/2018/google-dominates-browser-market
/ (archived on 2019-09-17).

http://arxiv.org/abs/1706.09115v2
http://arxiv.org/abs/1706.09115v2
https://web.archive.org/web/20190505/https://www-public.imtbs-tsp.eu/~maigron/RIR_Stats/RIR_Delegations/ByRIR/Stats-ByRIR.html
https://web.archive.org/web/20190505/https://www-public.imtbs-tsp.eu/~maigron/RIR_Stats/RIR_Delegations/ByRIR/Stats-ByRIR.html
https://web.archive.org/web/20190505/https://www-public.imtbs-tsp.eu/~maigron/RIR_Stats/RIR_Delegations/ByRIR/Stats-ByRIR.html
https://web.archive.org/web/20190505/https://www-public.imtbs-tsp.eu/~maigron/RIR_Stats/RIR_Delegations/ByRIR/Stats-ByRIR.html
https://doi.org/10.1007/978-3-540-71617-4_24
https://web.archive.org/web/20190604/http://mawi.nezu.wide.ad.jp/mawi/
https://web.archive.org/web/20190604/http://mawi.nezu.wide.ad.jp/mawi/
https://doi.org/10.1109/IFIPNetworking.2016.7497221
https://doi.org/10.1109/IFIPNetworking.2016.7497221
https://doi.org/10.1145/1064413.1064418
https://doi.org/10.1109/ICC.2016.7510788
https://web.archive.org/web/20190910/https://www.microworkers.com/
https://web.archive.org/web/20190910/https://www.microworkers.com/
https://doi.org/10.1109/AINA.2008.143
https://web.archive.org/web/20180517/https://getmonero.org
https://web.archive.org/web/20180517/https://getmonero.org
http://web.archive.org/web/20190917/https://internethealthreport.org/2018/google-dominates-browser-market/
http://web.archive.org/web/20190917/https://internethealthreport.org/2018/google-dominates-browser-market/
http://web.archive.org/web/20190917/https://internethealthreport.org/2018/google-dominates-browser-market/


Bibliography 229

[MBM+16] Matthew K. Mukerjee, Ilker Nadi Bozkurt, Bruce Maggs, Srinivasan
Seshan, and Hui Zhang. The Impact of Brokers on the Future of
Content Delivery. In Proceedings of the SIGCOMM Workshop on Hot
Topics in Networks (HotNets ’16), pages 127–133. ACM, 2016. doi:
10.1145/3005745.3005749.

[MBR+17] Matthew K. Mukerjee, Ilker Nadi Bozkurt, Devdeep Ray, Bruce M.
Maggs, Srinivasan Seshan, and Hui Zhang. Redesigning CDN-Broker
Interactions for Improved Content Delivery. In Proceedings of the
International Conference on emerging Networking EXperiments and
Technologies (CoNEXT ’17), pages 68–80. ACM, 2017. doi: 10.1145
/3143361.3143366.

[AFA+19] Mhd Wesam Al-Nabki, Eduardo Fidalgo, Enrique Alegre, and Laura
Fernández-Robles. ToRank: Identifying the Most Influential Suspicious
Domains in the Tor Network. Expert Systems with Applications (ESWA
June ’19), 123:212–226, Elsevier, June 2019. doi: 10.1016/j.eswa.20
19.01.029.

[NFL+14] David Naylor, Alessandro Finamore, Ilias Leontiadis, Yan Grunen-
berger, Marco Mellia, Maurizio Munafò, Konstantina Papagiannaki,
and Peter Steenkiste. The Cost of the “S” in HTTPS. In Proceedings
of the International Conference on emerging Networking EXperiments
and Technologies (CoNEXT ’14), pages 133–140. ACM, 2014. doi:
10.1145/2674005.2674991.

[NdOA+18] Késsia Nepomuceno, Igor Nogueira de Oliveira, Rafael Roque Aschoff,
Daniel Bezerra, Maria Silvia Ito, Wesley Melo, Djamel Sadok, and Géza
Szabó. QUIC and TCP: A Performance Evaluation. In Proceedings
of the Symposium on Computers and Communications (ISCC ’18),
pages 1–7. IEEE, 2018. doi: 10.1109/ISCC.2018.8538687.

[Net12] Netflix. Announcing the Netflix Open Connect Network, June 4, 2012.
url: http://web.archive.org/web/20120606/http://blog.netfl
ix.com/2012/06/announcing-netflix-open-connect-network.ht
ml (archived on 2012-06-06).

[NSD+15] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith
Winstein, James Mickens, and Hari Balakrishnan. Mahimahi: Accurate
Record-and-Replay for HTTP. In Proceedings of the USENIX Annual
Technical Conference (ATC ’15), pages 417–429. USENIX, 2015. url:
https://www.usenix.org/conference/atc15/technical-session
/presentation/netravali.

[NJ12] Kathleen Nichols and Van Jacobson. Controlling Queue Delay. Queue –
Networks. Networks (Queue May ’12), 10(5):20–34, ACM, May 2012.
doi: 10.1145/2208917.2209336.

[NMS+14] Nick Nikiforakis, Federico Maggi, Gianluca Stringhini, M. Zubair
Rafique, Wouter Joosen, Christopher Kruegel, Frank Piessens, Giovanni
Vigna, and Stefano Zanero. Stranger Danger: Exploring the Ecosystem
of Ad-based URL Shortening Services. In In Proceedings of the World

https://doi.org/10.1145/3005745.3005749
https://doi.org/10.1145/3143361.3143366
https://doi.org/10.1145/3143361.3143366
https://doi.org/10.1016/j.eswa.2019.01.029
https://doi.org/10.1016/j.eswa.2019.01.029
https://doi.org/10.1145/2674005.2674991
https://doi.org/10.1109/ISCC.2018.8538687
http://web.archive.org/web/20120606/http://blog.netflix.com/2012/06/announcing-netflix-open-connect-network.html
http://web.archive.org/web/20120606/http://blog.netflix.com/2012/06/announcing-netflix-open-connect-network.html
http://web.archive.org/web/20120606/http://blog.netflix.com/2012/06/announcing-netflix-open-connect-network.html
https://www.usenix.org/conference/atc15/technical-session/presentation/netravali
https://www.usenix.org/conference/atc15/technical-session/presentation/netravali
https://doi.org/10.1145/2208917.2209336


230 Bibliography

Wide Web Conference (WWW ’14), pages 51–62. ACM, 2014. doi:
10.1145/2566486.2567983.

[NS14] Daiyuu Nobori and Yasushi Shinjo. VPN Gate: A Volunteer-Organized
Public VPN Relay System with Blocking Resistance for Bypassing
Government Censorship Firewalls. In Proceedings of the USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI ’14),
pages 229–241. USENIX, 2014. url: https://www.usenix.org/conf
erence/nsdi14/technical-sessions/presentation/nobori.

[Nok17] Nokia. Router Configuration Guide Release 15.0.R5. Manual, Septem-
ber 2017. url: https://infoproducts.alcatel-lucent.com/cgi
-bin/dbaccessfilename.cgi/3HE11976AAACTQZZA01_V1_7450%20
ESS%207750%20SR%207950%20XRS%20and%20VSR%20Router%20Confi
guration%20Guide%20R15.0.R5.pdf (visited on 2019-08-13).

[Nor14] William B. Norton. Internet Peering. In The Internet Peering Playbook.
DrPeering Press, 2014. Chapter 4. url: http://web.archive.org
/web/20190819/http://drpeering.org/HTML_IPP/ipptoc.html
(archived on 2019-08-19).

[NSS10] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. The Akamai Net-
work: A Platform for High-performance Internet Applications. SIGOPS
Operating Systems Review (Oper. Syst. Rev. July ’10), 44(3):2–19, ACM,
August 2010. doi: 10.1145/1842733.1842736.

[OM18] Omsk Social Club and !Mediengruppe Bitnik. Cryptorave #5 Alexiety
- 0b673cce.xyz, 2018. url: https://web.archive.org/web/2018051
5/https://0b673cce.xyz/ (archived on 2018-05-15).

[Ora19] Oracle. Dynamic Steering | DNS Load Balancing | DynDNS | DDNS
Trial, 2019. url: https://web.archive.org/web/20190814/https:
//dyn.com/dynamic-steering/ (archived on 2019-08-14).

[OSR+12] John S. Otto, Mario A. Sánchez, John P. Rula, and Fabián E. Busta-
mante. Content Delivery and the Natural Evolution of DNS: Remote
DNS Trends, Performance Issues and Alternative Solutions. In Proceed-
ings of the Internet Measurement Conference (IMC ’12), pages 523–536.
ACM, 2012. doi: 10.1145/2398776.2398831.

[PF01] Jitendra Padhye and Sally Floyd. On Inferring TCP Behavior. In
Proceedings of the Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications (SIGCOMM ’01),
pages 287–298. ACM, 2001. doi: 10.1145/383059.383083.

[PDB18] Maxime Piraux, Quentin De Coninck, and Olivier Bonaventure. Ob-
serving the Evolution of QUIC Implementations. In Proceedings of the
Workshop on the Evolution, Performance, and Interoperability of QUIC
(EPIQ ’18), pages 8–14. ACM, 2018. doi: 10.1145/3284850.3284852.

[Pix17] Pixalate. Pixalate unveils the list of sites secretly mining for cryptocur-
rency, October 26, 2017. url: https://web.archive.org/web/2018
0515/http://blog.pixalate.com/coinhive-cryptocurrency-min
ing-cpu-site-list (archived on 2018-05-15).

https://doi.org/10.1145/2566486.2567983
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/nobori
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/nobori
https://infoproducts.alcatel-lucent.com/cgi-bin/dbaccessfilename.cgi/3HE11976AAACTQZZA01_V1_7450%20ESS%207750%20SR%207950%20XRS%20and%20VSR%20Router%20Configuration%20Guide%20R15.0.R5.pdf
https://infoproducts.alcatel-lucent.com/cgi-bin/dbaccessfilename.cgi/3HE11976AAACTQZZA01_V1_7450%20ESS%207750%20SR%207950%20XRS%20and%20VSR%20Router%20Configuration%20Guide%20R15.0.R5.pdf
https://infoproducts.alcatel-lucent.com/cgi-bin/dbaccessfilename.cgi/3HE11976AAACTQZZA01_V1_7450%20ESS%207750%20SR%207950%20XRS%20and%20VSR%20Router%20Configuration%20Guide%20R15.0.R5.pdf
https://infoproducts.alcatel-lucent.com/cgi-bin/dbaccessfilename.cgi/3HE11976AAACTQZZA01_V1_7450%20ESS%207750%20SR%207950%20XRS%20and%20VSR%20Router%20Configuration%20Guide%20R15.0.R5.pdf
http://web.archive.org/web/20190819/http://drpeering.org/HTML_IPP/ipptoc.html
http://web.archive.org/web/20190819/http://drpeering.org/HTML_IPP/ipptoc.html
https://doi.org/10.1145/1842733.1842736
https://web.archive.org/web/20180515/https://0b673cce.xyz/
https://web.archive.org/web/20180515/https://0b673cce.xyz/
https://web.archive.org/web/20190814/https://dyn.com/dynamic-steering/
https://web.archive.org/web/20190814/https://dyn.com/dynamic-steering/
https://doi.org/10.1145/2398776.2398831
https://doi.org/10.1145/383059.383083
https://doi.org/10.1145/3284850.3284852
https://web.archive.org/web/20180515/http://blog.pixalate.com/coinhive-cryptocurrency-mining-cpu-site-list
https://web.archive.org/web/20180515/http://blog.pixalate.com/coinhive-cryptocurrency-mining-cpu-site-list
https://web.archive.org/web/20180515/http://blog.pixalate.com/coinhive-cryptocurrency-mining-cpu-site-list


Bibliography 231

[PFA+10] Ingmar Poese, Benjamin Frank, Bernhard Ager, Georgios Smaragdakis,
and Anja Feldmann. Improving Content Delivery Using Provider-aided
Distance Information. In Proceedings of the Internet Measurement
Conference (IMC ’10), pages 22–34, Melbourne, Australia. ACM, 2010.
doi: 10.1145/1879141.1879145.

[Pro18] Proofpoint. Smominru Monero mining botnet making millions for
operators, January 31, 2018. url: https://web.archive.org/web/2
0180515/https://www.proofpoint.com/us/threat-insight/pos
t/smominru-monero-mining-botnet-making-millions-operators
(archived on 2018-05-15).

[Pub19] Public Interest Registry. Zone File Access, 2019. url: http://www.pi
r.org/ (visited on 2019-07-31).

[QGM+09] Feng Qian, Alexandre Gerber, Zhuoqing Morley Mao, Subhabrata
Sen, Oliver Spatscheck, and Walter Willinger. TCP Revisited: A Fresh
Look at TCP in the Wild. In Proceedings of the Internet Measurement
Conference (IMC ’09), pages 76–89. ACM, 2009. doi: 10.1145/16448
93.1644903.

[RCC+11] Sivasankar Radhakrishnan, Yuchung Cheng, Jerry Chu, Arvind Jain,
and Barath Raghavan. TCP Fast Open. In Proceedings of the Interna-
tional Conference on emerging Networking EXperiments and Technolo-
gies (CoNEXT ’11), pages 1–12. ACM, 2011. doi: 10.1145/2079296
.2079317.

[RPB+12] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio
Honda, Fabien Duchene, Olivier Bonaventure, and Mark Handley. How
Hard Can It Be? Designing and Implementing a Deployable Multipath
TCP. In Proceedings of the USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI ’12), pages 399–412. USENIX
Association, 2012. url: https://www.usenix.org/conference/nsdi
12/technical-sessions/presentation/raiciu.

[RLK+19] Mohammad Rajiullah, Andra Lutu, Ali Safari Khatouni, Mah-Rukh
Fida, Marco Mellia, Anna Brunstrom, Ozgu Alay, Stefan Alfredsson,
and Vincenzo Mancuso. Web Experience in Mobile Networks: Lessons
from Two Million Page Visits. In In Proceedings of the World Wide
Web Conference (WWW ’19), pages 1532–1543. ACM, 2019. doi: 10
.1145/3308558.3313606.

[RFC606] L. Peter Deutsch. Host Names On-line. RFC 606, RFC Editor, Decem-
ber 1973, pages 1–3. doi: 10.17487/RFC0606.

[RFC792] Jonathan B. Postel. Internet Control Message Protocol. RFC 792, RFC
Editor, September 1981, pages 1–21. doi: 10.17487/RFC0792.

[RFC793] Information Sciences Institute. Transmission Control Protocol. RFC
793, RFC Editor, September 1981, pages 1–91. doi: 10.17487/RFC079
3.

https://doi.org/10.1145/1879141.1879145
https://web.archive.org/web/20180515/https://www.proofpoint.com/us/threat-insight/post/smominru-monero-mining-botnet-making-millions-operators
https://web.archive.org/web/20180515/https://www.proofpoint.com/us/threat-insight/post/smominru-monero-mining-botnet-making-millions-operators
https://web.archive.org/web/20180515/https://www.proofpoint.com/us/threat-insight/post/smominru-monero-mining-botnet-making-millions-operators
http://www.pir.org/
http://www.pir.org/
https://doi.org/10.1145/1644893.1644903
https://doi.org/10.1145/1644893.1644903
https://doi.org/10.1145/2079296.2079317
https://doi.org/10.1145/2079296.2079317
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/raiciu
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/raiciu
https://doi.org/10.1145/3308558.3313606
https://doi.org/10.1145/3308558.3313606
https://doi.org/10.17487/RFC0606
https://doi.org/10.17487/RFC0792
https://doi.org/10.17487/RFC0793
https://doi.org/10.17487/RFC0793


232 Bibliography

[RFC882] Paul Mockapetris. DOMAIN NAMES - CONCEPTS and FACILITIES.
RFC 882, RFC Editor, November 1983, pages 1–31. doi: 10.17487
/RFC0882.

[RFC896] John Nagle. Congestion Control in IP/TCP Internetworks. RFC 896,
RFC Editor, January 6, 1984, pages 1–9. doi: 10.17487/RFC0896.

[RFC1122] Robert Braden. Requirements for Internet Hosts - Communication
Layers. RFC 1122, RFC Editor, October 1989, pages 1–116. doi: 10.1
7487/RFC1122.

[RFC1191] Jeffrey C. Mogul and Steve E. Deering. Path MTU Discovery. RFC 1191,
RFC Editor, November 1990, pages 1–19. doi: 10.17487/RFC1191.

[RFC1700] Joyce K. Reynolds and Jonathan B. Postel. Assigned Numbers. RFC
1700, RFC Editor, October 1994, pages 1–230. doi: 10.17487/RFC1700.

[RFC1812] Frederick J. Baker. Requirements for IP Version 4 Routers. RFC 1812,
RFC Editor, June 1995, pages 1–175. doi: 10.17487/RFC1812.

[RFC1925] Ross Callon. The Twelve Networking Truths. RFC 1925, RFC Editor,
April 1996, pages 1–3. doi: 10.17487/RFC1925.

[RFC2001] W. Richard Stevens. TCP Slow Start, Congestion Avoidance, Fast
Retransmit, and Fast Recovery Algorithms. RFC 2001, RFC Editor,
January 1997, pages 1–6. doi: 10.17487/RFC2001.

[RFC2414] Mark Allman, Sally Floyd, and Craig Partridge. Increasing TCP’s
Initial Window. RFC 2414, RFC Editor, September 1998, pages 1–14.
doi: 10.17487/RFC2414.

[RFC2460] Steve E. Deering and Robert M. Hinden. Internet Protocol, Version 6
(IPv6) Specification. RFC 2460, RFC Editor, December 1998, pages 1–
39. doi: 10.17487/RFC2460.

[RFC3390] Mark Allman, Sally Floyd, and Craig Partridge. Increasing TCP’s
Initial Window. RFC 3390, RFC Editor, October 2002, pages 1–14.
doi: 10.17487/RFC3390.

[RFC3742] Sally Floyd. Limited Slow-Start for TCP with Large Congestion Win-
dows. RFC 3742, RFC Editor, March 2004, pages 1–7. doi: 10.17487
/RFC3742.

[RFC4271] Yakov Rekhter, Tony Li, and Susan Hares. A Border Gateway Protocol
4 (BGP-4). RFC 4271, RFC Editor, January 2006, pages 1–104. doi:
10.17487/RFC4271.

[RFC5290] Sally Floyd and Mark Allman. Comments on the Usefulness of Simple
Best-Effort Traffic. RFC 5290, RFC Editor, July 2009, pages 1–20. doi:
10.17487/RFC5290.

[RFC5681] Mark Allman, Vern Paxson, and Ethan Blanton. TCP Congestion
Control. RFC 5681, RFC Editor, September 2009, pages 1–18. doi:
10.17487/RFC5681.

[RFC5927] Fernando Gont. ICMP Attacks against TCP. RFC 5927, RFC Editor,
July 2010, pages 1–36. doi: 10.17487/RFC5927.

https://doi.org/10.17487/RFC0882
https://doi.org/10.17487/RFC0882
https://doi.org/10.17487/RFC0896
https://doi.org/10.17487/RFC1122
https://doi.org/10.17487/RFC1122
https://doi.org/10.17487/RFC1191
https://doi.org/10.17487/RFC1700
https://doi.org/10.17487/RFC1812
https://doi.org/10.17487/RFC1925
https://doi.org/10.17487/RFC2001
https://doi.org/10.17487/RFC2414
https://doi.org/10.17487/RFC2460
https://doi.org/10.17487/RFC3390
https://doi.org/10.17487/RFC3742
https://doi.org/10.17487/RFC3742
https://doi.org/10.17487/RFC4271
https://doi.org/10.17487/RFC5290
https://doi.org/10.17487/RFC5681
https://doi.org/10.17487/RFC5927


Bibliography 233

[RFC6582] Andrei Gurtov, Tom Henderson, Sally Floyd, and Yoshifumi Nishida.
The NewReno Modification to TCP’s Fast Recovery Algorithm. RFC
6582, RFC Editor, April 2012, pages 1–16. doi: 10.17487/RFC6582.

[RFC6633] Fernando Gont. Deprecation of ICMP Source Quench Messages. RFC
6633, RFC Editor, May 2012, pages 1–8. doi: 10.17487/RFC6633.

[RFC6928] H.K. Jerry Chu, Nandita Dukkipati, Yuchung Cheng, and Matt Mathis.
Increasing TCP’s Initial Window. RFC 6928, RFC Editor, April 2013,
pages 1–24. doi: 10.17487/RFC6928.

[RFC7413] Yuchung Cheng, Jerry Chu, Sivasankar Radhakrishnan, and Arvind
Jain. TCP Fast Open. RFC 7413, RFC Editor, December 2014, pages 1–
26. doi: 10.17487/RFC7413.

[RFC7540] Mike Belshe, Roberto Peon, and Martin Thomson (Ed.) Hypertext
Transfer Protocol Version 2 (HTTP/2). RFC 7540, RFC Editor, May
2013, pages 1–96. doi: 10.17487/RFC7540.

[RFC8289] Kathleen Nichols, Van Jacobson, Andrew McGregor, and Jana Iyengar.
Controlled Delay Active Queue Management. RFC 8289, RFC Editor,
January 2018. doi: 10.17487/RFC8289.

[RFC8290] Toke Høiland-Jørgensen, Paul McKenney, Dave Taht, Jim Gettys, and
Eric Dumazet. The Flow Queue CoDel Packet Scheduler and Active
Queue Management Algorithm. RFC 8290, RFC Editor, January 2018,
pages 1–25. doi: 10.17487/RFC8290.

[RFC8312] Injong Rhee, Lisong Xu, Sangtae Ha, Alexander Zimmermann, Lars
Eggert, and Richard Scheffenegger. CUBIC for Fast Long-Distance
Networks. RFC 8312, RFC Editor, February 2018, pages 1–18. doi:
10.17487/RFC8312.

[RFC8446] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version
1.3. RFC 8446, RFC Editor, August 2018, pages 1–160. doi: 10.17487
/RFC8446.

[RFC8484] Paul E. Hoffman and Patrick McManus. DNS Queries over HTTPS
(DoH). RFC 8484, RFC Editor, October 2018, pages 1–21. doi: 10.17
487/RFC8484.

[RNB+18] John P. Rula, James Newman, Fabián E. Bustamante, Arash Molavi
Kakhki, and David Choffnes. Mile High WiFi: A First Look At In-Flight
Internet Connectivity. In Proceedings of the International Conference
on World Wide Web (WWW ’18), pages 1449–1458. IW3C2, 2018. doi:
10.1145/3178876.3186057.

[Rüt17] Jan Rüth. ZMap and Modules, August 12, 2017. url: https://githu
b.com/COMSYS/zmap (visited on 2019-07-30).

[Rüt18a] Jan Rüth. Coinhive Dataset and Tools, September 19, 2018. doi:
10.5281/zenodo.1421702.

[Rüt18b] Jan Rüth. Coinhive Link Forwarding Example to Youtube, 2018. url:
https://web.archive.org/web/20180516/https://cnhv.co/3w88
o (archived on 2018-05-16).

https://doi.org/10.17487/RFC6582
https://doi.org/10.17487/RFC6633
https://doi.org/10.17487/RFC6928
https://doi.org/10.17487/RFC7413
https://doi.org/10.17487/RFC7540
https://doi.org/10.17487/RFC8289
https://doi.org/10.17487/RFC8290
https://doi.org/10.17487/RFC8312
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8484
https://doi.org/10.17487/RFC8484
https://doi.org/10.1145/3178876.3186057
https://github.com/COMSYS/zmap
https://github.com/COMSYS/zmap
https://doi.org/10.5281/zenodo.1421702
https://web.archive.org/web/20180516/https://cnhv.co/3w88o
https://web.archive.org/web/20180516/https://cnhv.co/3w88o


234 Bibliography

[Rüt18c] Jan Rüth. Github: IW-Prober, May 16, 2018. doi: 10.5281/zenodo.1
247327.

[Rüt18d] Jan Rüth. ICMP Dataset and Tools, 2018. url: https://web.arc
hive.org/web/20190813/https://icmp.netray.io/ (archived on
2019-08-13).

[Rüt19] Jan Rüth. Active Measurements and Tools, 2019. url: https://quic
.netray.io (visited on 2019-07-31).

[RBH17] Jan Rüth, Christian Bormann, and Oliver Hohlfeld. Large-Scale Scan-
ning of TCP’s Initial Window. In Proceedings of the Internet Mea-
surement Conference (IMC ’17), pages 304–310. ACM, 2017. doi:
10.1145/3131365.3131370.

[RH18] Jan Rüth and Oliver Hohlfeld. Demystifying TCP Initial Window
Configurations of Content Distribution Networks. In Proceedings of
the IFIP Network Traffic Measurement and Analysis Conference (TMA
’18), pages 1–8. IEEE, 2018. doi: 10.23919/TMA.2018.8506549.

[RKH19a] Jan Rüth, Ike Kunze, and Oliver Hohlfeld. An Empirical View on
Content Provider Fairness. In Proceedings of the IFIP Network Traffic
Measurement and Analysis Conference (TMA ’19), pages 1–8. IEEE,
2019. doi: 10.23919/TMA.2019.8784684.

[RKH19b] Jan Rüth, Ike Kunze, and Oliver Hohlfeld. TCP’s Initial Window –
Deployment in the Wild and its Impact on Performance. Transactions
on Network and Service Management (TNSM June ’19), 16(2):389–402,
IEEE, June 2019. doi: 10.1109/TNSM.2019.2896335.

[RPD+18] Jan Rüth, Ingmar Poese, Christoph Dietzel, and Oliver Hohlfeld. A
First Look at QUIC in the Wild. In Proceedings of the Conference on
Passive and Active Measurement (PAM ’18), pages 255–268. Springer,
Cham, 2018. doi: 10.1007/978-3-319-76481-8_19.

[RWS+19] Jan Rüth, Konrad Wolsing, Martin Serror, Klaus Wehrle, and Oliver
Hohlfeld. Blitz-starting QUIC Connections. arXiv ePrint 1905.03144,
RWTH Aachen University, 2019, pages 1–8.

[RWW+19] Jan Rüth, Konrad Wolsing, Klaus Wehrle, and Oliver Hohlfeld. Per-
ceiving QUIC: Do Users Notice or Even Care? In Proceedings of the
International Conference on emerging Networking EXperiments and
Technologies (CoNEXT ’19), pages 1–7. ACM, 2019. doi: 10.1145/33
59989.3365416.

[RZH19] Jan Rüth, Torsten Zimmermann, and Oliver Hohlfeld. Hidden Treasures
— Recycling Large-Scale Internet Measurements to Study the Internet’s
Control Plane. In Proceedings of the Conference on Passive and Active
Measurement (PAM ’19), pages 51–67. Springer, Cham, 2019. doi:
10.1007/978-3-030-15986-3_4.

[RZW+18] Jan Rüth, Torsten Zimmermann, Konrad Wolsing, and Oliver Hohlfeld.
Digging into Browser-based Crypto Mining. In Proceedings of the
Internet Measurement Conference (IMC ’18), pages 70–76. ACM, 2018.
doi: 10.1145/3278532.3278539.

https://doi.org/10.5281/zenodo.1247327
https://doi.org/10.5281/zenodo.1247327
https://web.archive.org/web/20190813/https://icmp.netray.io/
https://web.archive.org/web/20190813/https://icmp.netray.io/
https://quic.netray.io
https://quic.netray.io
https://doi.org/10.1145/3131365.3131370
https://doi.org/10.23919/TMA.2018.8506549
https://doi.org/10.23919/TMA.2019.8784684
https://doi.org/10.1109/TNSM.2019.2896335
https://doi.org/10.1007/978-3-319-76481-8_19
https://doi.org/10.1145/3359989.3365416
https://doi.org/10.1145/3359989.3365416
https://doi.org/10.1007/978-3-030-15986-3_4
https://doi.org/10.1145/3278532.3278539


Bibliography 235

[SRH+19] Constantin Sander, Jan Rüth, Oliver Hohlfeld, and Klaus Wehrle. DeeP-
CCI: Deep Learning-based Passive Congestion Control Identification.
In Proceedings of the SIGCOMM Workshop on Network Meets AI & ML
(NetAI ’19), pages 1–7. ACM, 2019. doi: 10.1145/3341216.3342211.

[Sch09] Michael Scharf. Performance Evaluation of Fast Startup Congestion
Control Schemes. In Proceedings of the IFIP Networking Conference
(NETWORKING ’09), pages 716–727. Springer Berlin Heidelberg, 2009.
doi: 10.1007/978-3-642-01399-7_56.

[SGS+17] Quirin Scheitle, Oliver Gasser, Patrick Sattler, and Georg Carle. HLOC:
Hints-Based Geolocation Leveraging Multiple Measurement Frame-
works. In Proceedings of the IFIP Network Traffic Measurement and
Analysis Conference (TMA ’17), pages 1–9. IEEE, 2017. doi: 10.2391
9/TMA.2017.8002903.

[SHG+18] Quirin Scheitle, Oliver Hohlfeld, Julien Gamba, Jonas Jelten, Torsten
Zimmermann, Stephen D. Strowes, and Narseo Vallina-Rodriguez. A
Long Way to the Top: Significance, Structure, and Stability of Internet
Top Lists. In Proceedings of the Internet Measurement Conference (IMC
’18), pages 478–493. ACM, 2018. doi: 10.1145/3278532.3278574.

[SJS+18] Dominik Scholz, Benedikt Jaeger, Lukas Schwaighofer, Daniel Raumer,
Fabien Geyer, and Georg Carle. Towards a Deeper Understanding of
TCP BBR Congestion Control. In Proceedings of the IFIP Networking
Conference (NETWORKING ’18), pages 1–9. IEEE, 2018. doi: 10.23
919/IFIPNetworking.2018.8696830.

[Sec17] Paul Sec. Extract from the Top 1M Alexa domains (and also from
investigations) using coin-hive mining service, September 28, 2017. url:
https://web.archive.org/web/20180515/https://gist.githu
b.com/PaulSec/029d198a1e049acead74c31db0de1466 (archived on
2018-05-15).

[Seg18] Jérôme Segura. Drive-by cryptomining campaign targets millions of
Android users, February 13, 2018. url: https://web.archive.org/w
eb/20180515/https://blog.malwarebytes.com/threat-analysis
/2018/02/drive-by-cryptomining-campaign-attracts-millions
-of-android-users/ (archived on 2018-05-15).

[SJN+13] Seigen, Max Jameson, Tuomo Nieminen, Neocortex, and Antonio M.
Juarez. CryptoNight Hash Function. CRYPTONOTE STANDARD
008, March 2013, pages 1–9. url: https://cryptonote.org/cns/cn
s008.txt.

[SSW+19a] Michael Seufert, Raimund Schatz, Nikolas Wehner, and Pedro Casas.
QUICker or not? - an Empirical Analysis of QUIC vs TCP for Video
Streaming QoE Provisioning. In Proceedings of the Conference on
Innovation in Clouds, Internet and Networks and Workshops (ICIN
’19), pages 1–6. IEEE, 2019. doi: 10.1109/ICIN.2019.8685913.

https://doi.org/10.1145/3341216.3342211
https://doi.org/10.1007/978-3-642-01399-7_56
https://doi.org/10.23919/TMA.2017.8002903
https://doi.org/10.23919/TMA.2017.8002903
https://doi.org/10.1145/3278532.3278574
https://doi.org/10.23919/IFIPNetworking.2018.8696830
https://doi.org/10.23919/IFIPNetworking.2018.8696830
https://web.archive.org/web/20180515/https://gist.github.com/PaulSec/029d198a1e049acead74c31db0de1466
https://web.archive.org/web/20180515/https://gist.github.com/PaulSec/029d198a1e049acead74c31db0de1466
https://web.archive.org/web/20180515/https://blog.malwarebytes.com/threat-analysis/2018/02/drive-by-cryptomining-campaign-attracts-millions-of-android-users/
https://web.archive.org/web/20180515/https://blog.malwarebytes.com/threat-analysis/2018/02/drive-by-cryptomining-campaign-attracts-millions-of-android-users/
https://web.archive.org/web/20180515/https://blog.malwarebytes.com/threat-analysis/2018/02/drive-by-cryptomining-campaign-attracts-millions-of-android-users/
https://web.archive.org/web/20180515/https://blog.malwarebytes.com/threat-analysis/2018/02/drive-by-cryptomining-campaign-attracts-millions-of-android-users/
https://cryptonote.org/cns/cns008.txt
https://cryptonote.org/cns/cns008.txt
https://doi.org/10.1109/ICIN.2019.8685913


236 Bibliography

[SSW+19b] Michael Seufert, Raimund Schatz, Nikolas Wehner, Bruno Gardlo, and
Pedro Casas. Is QUIC becoming the New TCP? On the Potential Impact
of a New Protocol on Networked Multimedia QoE. In Proceedings of
the International Conference on Quality of Multimedia Experience
(QoMEX ’19), pages 1–6. IEEE, 2019. doi: 10.1109/QoMEX.2019.874
3223.

[SV96] Madhavapeddi Shreedhar and George Varghese. Efficient Fair Queuing
Using Deficit Round-Robin. IEEE/ACM Transactions on Networking
(ToN June ’96), 4(3):375–385, IEEE, June 1996. doi: 10.1109/90.502
236.

[sit19] sitespeed.io. Browsertime - Your browser, your page, your scripts!,
September 9, 2019. url: https://web.archive.org/web/201909
10/https://github.com/sitespeedio/browsertime (archived on
2019-09-10).

[SGM+19] Steve Souders, Ilya Grigorik, Pat Meenan, and Rick Viscomi. The
HTTP Archive, 2019. url: https://web.archive.org/web/2019073
1/https://www.httparchive.org/ (archived on 2019-07-31).

[SMD03] Ashwin Sridharan, Sue Moon, and Christophe Diot. On the Correlation
between Route Dynamics and Routing Loops. In Proceedings of the
Internet Measurement Conference (IMC ’03), pages 285–294. ACM,
2003. doi: 10.1145/948205.948243.

[Sta82] Christopher C. Stacy. Getting Started Computing at the AI Lab. Work-
ing Paper 235, MIT Artificial Intelligence Laboratory, September 7,
1982, pages 1–58. url: https://dspace.mit.edu/bitstream/handl
e/1721.1/41180/AI_WP_235.pdf (visited on 2019-08-07).

[SCK+09] Ao-Jan Su, David R. Choffnes, Aleksandar Kuzmanovic, and Fabián E.
Bustamante. Drafting Behind Akamai: Inferring Network Conditions
Based on CDN Redirections. IEEE/ACM Transactions on Networking
(ToN Dec. ’09), 17(6):1752–1765, IEEE Press, December 2009. doi:
10.1109/TNET.2009.2022157.

[Sul17] Nick Sullivan. Introducing Zero Round Trip Time Resumption (0-RTT),
March 15, 2017. url: https://web.archive.org/web/20190909/h
ttps://blog.cloudflare.com/introducing-0-rtt/ (archived on
2019-09-09).

[Swe16] Ian Swett. QUIC - Deployment Experience @Google, July 20, 2016.
url: https://www.ietf.org/proceedings/96/slides/slides-96-
quic-3.pdf (visited on 2019-07-31). Video available at: https://you
tu.be/aGvFuvmEufs?t=2490.

[Sym18] Symantec. Advanced Web Intelligence - RuleSpace | Symantec, 2018.
url: https://web.archive.org/web/20180516/https://www.syma
ntec.com/products/rulespace (archived on 2018-05-16).

[Ten18] Tencent Cloud. Tencent Cloud – Industry Intelligence changes the
future of the cloud, 2018. url: https://web.archive.org/web/2019
0801/https://cloud.tencent.com/ (archived on 2019-08-01).

https://doi.org/10.1109/QoMEX.2019.8743223
https://doi.org/10.1109/QoMEX.2019.8743223
https://doi.org/10.1109/90.502236
https://doi.org/10.1109/90.502236
https://web.archive.org/web/20190910/https://github.com/sitespeedio/browsertime
https://web.archive.org/web/20190910/https://github.com/sitespeedio/browsertime
https://web.archive.org/web/20190731/https://www.httparchive.org/
https://web.archive.org/web/20190731/https://www.httparchive.org/
https://doi.org/10.1145/948205.948243
https://dspace.mit.edu/bitstream/handle/1721.1/41180/AI_WP_235.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/41180/AI_WP_235.pdf
https://doi.org/10.1109/TNET.2009.2022157
https://web.archive.org/web/20190909/https://blog.cloudflare.com/introducing-0-rtt/
https://web.archive.org/web/20190909/https://blog.cloudflare.com/introducing-0-rtt/
https://www.ietf.org/proceedings/96/slides/slides-96-quic-3.pdf
https://www.ietf.org/proceedings/96/slides/slides-96-quic-3.pdf
https://youtu.be/aGvFuvmEufs?t=2490
https://youtu.be/aGvFuvmEufs?t=2490
https://web.archive.org/web/20180516/https://www.symantec.com/products/rulespace
https://web.archive.org/web/20180516/https://www.symantec.com/products/rulespace
https://web.archive.org/web/20190801/https://cloud.tencent.com/
https://web.archive.org/web/20190801/https://cloud.tencent.com/


Bibliography 237

[Tho19] Martin Thomson. Version-Independent Properties of QUIC. Internet-
Draft draft-ietf-quic-invariants-06, Internet Engineering Task Force,
July 10, 2019, pages 1–10. url: https://datatracker.ietf.org/do
c/html/draft-ietf-quic-invariants-06. Work in Progress.

[TH14] Brian Trammell and Joe Hildebrand. Evolving Transport in the Inter-
net. IEEE Internet Computing (IC Sep.-Oct. ’14), 18(5):60–64, IEEE
Computer Society, September 2014. doi: 10.1109/MIC.2014.91.

[TKB+15] Brian Trammell, Mirja Kühlewind, Damiano Boppart, Iain Learmonth,
Gorry Fairhurst, and Richard Scheffenegger. Enabling Internet-Wide
Deployment of Explicit Congestion Notification. In Proceedings of the
Conference on Passive and Active Measurement (PAM ’15), pages 193–
205. Springer, Cham, 2015. doi: 10.1007/978-3-319-15509-8_15.

[Tre18] TrendMicro. Malvertising Campaign Abuses Google’s DoubleClick to
Deliver Cryptocurrency Miners, January 26, 2018. url: https://we
b.archive.org/web/20180515/https://blog.trendmicro.com/t
rendlabs-security-intelligence/malvertising-campaign-abus
es-googles-doubleclick-to-deliver-cryptocurrency-miners/
(archived on 2018-05-15).

[TGD+18] Martino Trevisan, Danilo Giordano, Idilio Drago, Marco Mellia, and
Maurizio Munafo. Five Years at the Edge: Watching Internet from
the ISP Network. In Proceedings of the International Conference on
emerging Networking EXperiments and Technologies (CoNEXT ’18),
pages 1–12. ACM, 2018. doi: 10.1145/3281411.3281433.

[VLF+11] Vytautas Valancius, Cristian Lumezanu, Nick Feamster, Ramesh Johari,
and Vijay V. Vazirani. How Many Tiers? Pricing in the Internet Transit
Market. In Proceedings of the ACM Conference on Special Interest
Group on Data Communication (SIGCOMM ’11), pages 194–205. ACM,
2011. doi: 10.1145/2018436.2018459.

[vRJS+16] Roland van Rijswijk-Deij, Mattijs Jonker, Anna Sperotto, and Aiko
Pras. A High-Performance, Scalable Infrastructure for Large-Scale
Active DNS Measurements. Journal on Selected Areas in Commu-
nications (JSAC June ’16), 34(6):1877–1888, IEEE, June 2016. doi:
10.1109/JSAC.2016.2558918.

[VSN+16] Matteo Varvello, Kyle Schomp, David Naylor, Jeremy Blackburn,
Alessandro Finamore, and Konstantina Papagiannaki. Is The Web
HTTP/2 Yet? In Proceedings of the Conference on Passive and Active
Measurement (PAM ’16), pages 218–232. Springer, Cham, 2016. doi:
10.1007/978-3-319-30505-9_17.

[Ver17] Verisign. The Verisign Domain Name Industry Brief, September 2017.
url: https://www.verisign.com/assets/domain-name-report-Q2
2017.pdf (visited on 2019-07-31).

[Ver19] Verisign. Zone Files For Top-Level Domains (TLDs), 2019. url: https
://web.archive.org/web/20190731/https://www.verisign.com/
(archived on 2019-07-31).

https://datatracker.ietf.org/doc/html/draft-ietf-quic-invariants-06
https://datatracker.ietf.org/doc/html/draft-ietf-quic-invariants-06
https://doi.org/10.1109/MIC.2014.91
https://doi.org/10.1007/978-3-319-15509-8_15
https://web.archive.org/web/20180515/https://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaign-abuses-googles-doubleclick-to-deliver-cryptocurrency-miners/
https://web.archive.org/web/20180515/https://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaign-abuses-googles-doubleclick-to-deliver-cryptocurrency-miners/
https://web.archive.org/web/20180515/https://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaign-abuses-googles-doubleclick-to-deliver-cryptocurrency-miners/
https://web.archive.org/web/20180515/https://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaign-abuses-googles-doubleclick-to-deliver-cryptocurrency-miners/
https://doi.org/10.1145/3281411.3281433
https://doi.org/10.1145/2018436.2018459
https://doi.org/10.1109/JSAC.2016.2558918
https://doi.org/10.1007/978-3-319-30505-9_17
https://www.verisign.com/assets/domain-name-report-Q22017.pdf
https://www.verisign.com/assets/domain-name-report-Q22017.pdf
https://web.archive.org/web/20190731/https://www.verisign.com/
https://web.archive.org/web/20190731/https://www.verisign.com/


238 Bibliography

[VS94] Curtis Villamizar and Cheng Song. High Performance TCP in ANSNET.
SIGCOMM Computer Communication Review (CCR Oct. 94), 24(5):45–
60, ACM, October 1994. doi: 10.1145/205511.205520.

[VH97] Vikram Visweswaraiah and John Heidemann. Improving Restart of Idle
TCP Connections. USC TR 97-661, University of Southern California
Computer Science Department, November 10, 1997, pages 1–11. url:
https://www.isi.edu/~johnh/PAPERS/Visweswaraiah97b.pdf
(visited on 2019-08-21).

[WQG+09] Feng Wang, Jian Qiu, Lixin Gao, and Jia Wang. On Understanding
Transient Interdomain Routing Failures. IEEE/ACM Transactions on
Networking (ToN Mar. ’09), 17(3):740–751, IEEE Press, June 2009.
doi: 10.1109/TNET.2008.2001952.

[War18] Mark Ward. Websites hacked to mint crypto-cash, October 9, 2018.
url: https://web.archive.org/web/20180515/http://www.bbc.c
om/news/technology-41518351 (archived on 2018-05-15).

[Web18] WebAssembly Community Group. WebAssembly, 2018. url: https
://web.archive.org/web/20180525/https://webassembly.org
(archived on 2018-05-25).

[WCL06] David X. Wei, Pei Cao, and Steven H. Low. TCP Pacing Revisited.
Unpublished but Available Online, 2006, pages 1–11. url: http://peo
ple.cs.pitt.edu/~ihsan/pacing_cal.pdf (visited on 2019-08-21).

[Whi11] Jason Whitehorn. jsMiner, June 9, 2011. url: https://web.archi
ve.org/web/20180517/https://github.com/jwhitehorn/jsMiner
(archived on 2018-05-17).

[WMQ+18] Maarten Wijnants, Robin Marx, Peter Quax, and Wim Lamotte.
HTTP/2 Prioritization and Its Impact on Web Performance. In In Pro-
ceedings of the World Wide Web Conference (WWW ’18), pages 1755–
1764. IW3C2, 2018. doi: 10.1145/3178876.3186181.

[Wol19] Konrad Wolsing. Does TCP keep up the pace against QUIC and do
users even notice? Master’s Thesis, RWTH Aachen University, June
2019.

[WRW+19] Konrad Wolsing, Jan Rüth, Klaus Wehrle, and Oliver Hohlfeld. A
Performance Perspective on Web Optimized Protocol Stacks: TCP+
TLS+HTTP/2 vs. QUIC. In Proceedings of the Applied Networking
Research Workshop (ANRW ’19), pages 1–7. ACM, 2019. doi: 10.114
5/3340301.3341123.

[XGF05] Jianhong Xia, Lixin Gao, and Teng Fei. Flooding Attacks by Exploiting
Persistent Forwarding Loops. In Proceedings of the Internet Measure-
ment Conference (IMC ’05), pages 385–390. USENIX Association, 2005.
url: https://www.usenix.org/conference/imc-05/flooding-att
acks-exploiting-persistent-forwarding-loops.

https://doi.org/10.1145/205511.205520
https://www.isi.edu/~johnh/PAPERS/Visweswaraiah97b.pdf
https://doi.org/10.1109/TNET.2008.2001952
https://web.archive.org/web/20180515/http://www.bbc.com/news/technology-41518351
https://web.archive.org/web/20180515/http://www.bbc.com/news/technology-41518351
https://web.archive.org/web/20180525/https://webassembly.org
https://web.archive.org/web/20180525/https://webassembly.org
http://people.cs.pitt.edu/~ihsan/pacing_cal.pdf
http://people.cs.pitt.edu/~ihsan/pacing_cal.pdf
https://web.archive.org/web/20180517/https://github.com/jwhitehorn/jsMiner
https://web.archive.org/web/20180517/https://github.com/jwhitehorn/jsMiner
https://doi.org/10.1145/3178876.3186181
https://doi.org/10.1145/3340301.3341123
https://doi.org/10.1145/3340301.3341123
https://www.usenix.org/conference/imc-05/flooding-attacks-exploiting-persistent-forwarding-loops
https://www.usenix.org/conference/imc-05/flooding-attacks-exploiting-persistent-forwarding-loops


Bibliography 239

[XGF07] Jianhong Xia, Lixin Gao, and Teng Fei. A Measurement Study of
Persistent Forwarding Loops on the Internet. Computer Networks
(ComNet Dec. ’07), 51(17):4780–4796, Elsevier, December 2007. doi:
10.1016/j.comnet.2007.07.004.

[XCW17] Jing’an Xue, David Choffnes, and Jilong Wang. CDNs Meet CN An
Empirical Study of CDN Deployments in China. IEEE Access (ACCESS
Mar. ’17), 5:5292–5305, IEEE, March 2017. doi: 10.1109/ACCESS.20
17.2682190.

[XKC+14] Lin Xue, Suman Kumar, Cheng Cui, and Seung-Jong Park. A study of
fairness among heterogeneous TCP variants over 10 Gbps high-speed
optical networks. Optical Switching and Networking (OSN July ’14),
13:124–134, Elsevier, July 2014. doi: 10.1016/j.osn.2014.03.003.

[YLX+11] Peng Yang, Wen Luo, Lisong Xu, Jitender Deogun, and Ying Lu. TCP
Congestion Avoidance Algorithm Identification. In Proceedings of the
International Conference on Distributed Computing Systems (ICDCS
’11), pages 310–321. IEEE, 2011. doi: 10.1109/ICDCS.2011.27.

[YXY17] Yajun Yu, Mingwei Xu, and Yuan Yang. When QUIC meets TCP: An
Experimental Study. In Proceedings of the International Performance
Computing and Communications Conference (IPCCC ’17), pages 1–8.
IEEE, 2017. doi: 10.1109/PCCC.2017.8280429.

[zaf18] zafaco GmbH. Breitbandmessung Ergebnisse als interaktive Darstellung,
2018. url: https://web.archive.org/web/20181115/https://br
eitbandmessung.de/interaktive-darstellung (archived on 2018-
11-15).

[Zal14] Michał Zalewski. p0f v3, 2014. url: http://lcamtuf.coredump.cx/p
0f3/ (visited on 2019-08-01).

[ZRW+17] Torsten Zimmermann, Jan Rüth, Benedikt Wolters, and Oliver Hohlfeld.
How HTTP/2 Pushes the Web: An Empirical Study of HTTP/2 Server
Push. In Proceedings of the IFIP Networking Conference (NETWORK-
ING ’17), pages 1–9. IEEE, 2017. doi: 10.23919/IFIPNetworking.2
017.8264830.

[ZWH17] Torsten Zimmermann, Benedikt Wolters, and Oliver Hohlfeld. A QoE
Perspective on HTTP/2 Server Push. In Proceedings of the Workshop on
QoE-based Analysis and Management of Data Communication Networks
(Internet QoE ’17), pages 1–6. ACM, 2017. doi: 10.1145/3098603.3
098604.

[ZWH+18] Torsten Zimmermann, Benedikt Wolters, Oliver Hohlfeld, and Klaus
Wehrle. Is the Web ready for HTTP/2 Server Push? In Proceedings
of the International Conference on emerging Networking EXperiments
and Technologies (CoNEXT ’18), pages 13–19. ACM, 2018. doi: 10.1
145/3281411.3281434.

https://doi.org/10.1016/j.comnet.2007.07.004
https://doi.org/10.1109/ACCESS.2017.2682190
https://doi.org/10.1109/ACCESS.2017.2682190
https://doi.org/10.1016/j.osn.2014.03.003
https://doi.org/10.1109/ICDCS.2011.27
https://doi.org/10.1109/PCCC.2017.8280429
https://web.archive.org/web/20181115/https://breitbandmessung.de/interaktive-darstellung
https://web.archive.org/web/20181115/https://breitbandmessung.de/interaktive-darstellung
http://lcamtuf.coredump.cx/p0f3/
http://lcamtuf.coredump.cx/p0f3/
https://doi.org/10.23919/IFIPNetworking.2017.8264830
https://doi.org/10.23919/IFIPNetworking.2017.8264830
https://doi.org/10.1145/3098603.3098604
https://doi.org/10.1145/3098603.3098604
https://doi.org/10.1145/3281411.3281434
https://doi.org/10.1145/3281411.3281434

	Abstract
	Acknowledgments
	Declaration of Authorship
	Contents
	1 Introduction
	1.1 Research Questions and Challenges
	1.2 Contributions and Outline of the Dissertation

	2 Background
	2.1 Internet Architecture and the Rise of Internet Giants
	2.1.1 The Domain Name System
	2.1.2 Content Delivery Networks

	2.2 Internet Measurements
	2.2.1 Measurement Ethics

	2.3 Internet Transport
	2.3.1 The Transmission Control Protocol
	2.3.2 QUIC
	2.3.2.1 Version Negotiation and Connection Establishment
	2.3.2.2 Challenges for QUIC

	2.3.3 Congestion control
	2.3.3.1 Reno
	2.3.3.2 CUBIC
	2.3.3.3 BBR
	2.3.3.4 Burstiness and Pacing
	2.3.3.5 Fairness

	2.3.4 Router Queues
	2.3.4.1 Buffer Sizing
	2.3.4.2 Active queue management



	3 Deployable Transport Optimizations
	3.1 Small Change, Big Effect – *TCP Initial Congestion Window
	3.1.1 TCP's Initial Congestion Window
	3.1.1.1 Testbed Study: Impact of IW Size on Internet Performance
	3.1.1.2 Related Work

	3.1.2 Measuring IWs
	3.1.3 Measuring IW Configurations in the Wild
	3.1.3.1 HTTP-based IW Inference
	3.1.3.2 TLS-based IW Inference
	3.1.3.3 Results: IW Distributions in *IPv4
	3.1.3.4 Overall IW Distribution
	3.1.3.5 IW Defined by Byte Limit
	3.1.3.6 IW Distribution by Network & Service
	3.1.3.7 Measuring CDN IWs

	3.1.4 Campus Network Perspective on CDN IWs
	3.1.4.1 IW Sizes
	3.1.4.2 Are IWs Content-Dependent?

	3.1.5 Worldwide Perspective on CDN IWs
	3.1.6 Burstiness of the CDN IWs
	3.1.7 IW Performance when Competing for Traffic
	3.1.7.1 Testbed and Parameterization
	3.1.7.2 Increasing CUBIC IWs and Applying Pacing
	3.1.7.3 Pacing Aggressiveness in Slow Start
	3.1.7.4 Increased IWs with BBR Congestion control

	3.1.8 Summary and Discussion

	3.2 Deploying a New Internet Transport – QUIC
	3.2.1 Related Work
	3.2.2 Measurement Overview
	3.2.3 An Introduction to *gQUIC Handshake
	3.2.4 Availability: QUIC Server Infrastructure
	3.2.4.1 gQUIC Census in October 2017
	3.2.4.2 Evolution of gQUIC in 2018 and 2019
	3.2.4.3 The Rise of iQUIC

	3.2.5 Usage: QUIC Traffic Share
	3.2.5.1 QUIC Census 2017
	3.2.5.2 Beyond the Census:Traffic Shares in Access Networks

	3.2.6 The Performance of gQUIC Against an Optimized TCP+TLS+HTTP/2 Web Stack
	3.2.6.1 Web Performance Metrics
	3.2.6.2 Repeatable Protocol Performance Evaluations
	3.2.6.3 QUIC vs. TCP:According to Web Performance Metrics
	3.2.6.4 QUIC vs. TCP: According to User Perception

	3.2.7 Summary and Discussion

	3.3 Fairness in an Anarchic System – Congestion Control
	3.3.1 Background and Related Work
	3.3.2 Methodology
	3.3.2.1 Home User (Residential Access) Scenarios
	3.3.2.2 Testbed Setup
	3.3.2.3 Parameter Space
	3.3.2.4 Fairness Metric
	3.3.2.5 Testbed Validation

	3.3.3 Congestion control in the Wild
	3.3.3.1 Lab Traffic vs. Content provider Traffic
	3.3.3.2 Content Provider vs. Content Provider
	3.3.3.3 Can CoDel Improve Fairness?

	3.3.4 Summary and Discussion

	3.4 Conclusion

	4 Evolution in the Internet's Core
	4.1 Listening into the Void – Studying Internet Core Evolution
	4.1.1 Scan Infrastructure & Dataset
	4.1.2 Study of ICMP Responses
	4.1.2.1 Responses to Individual Measurements
	4.1.2.2 ICMP Echos
	4.1.2.3 Source quench
	4.1.2.4 Redirect
	4.1.2.5 Unreachable Hosts
	4.1.2.6 Summary

	4.1.3 Routing Loops
	4.1.3.1 Methodology: Detecting Loops
	4.1.3.2 Routing Loops in the Wild

	4.1.4 Related Work
	4.1.5 Summary and Discussion

	4.2 Individualism in the Age of Giants – Indirection through Meta-CDNs
	4.2.1 Background and Related Work
	4.2.2 Characterizing a Meta-CDN
	4.2.2.1 Operation Principles
	4.2.2.2 Customers

	4.2.3 A Global View on Cedexis
	4.2.3.1 Infrastructure
	4.2.3.2 How Customers utilize Cedexis
	4.2.3.3 Latency Perspective

	4.2.4 Summary and Discussion

	4.3 Conclusion

	5 Abusing Innovation on the Application Layer
	5.1 Browser-based Cryptocurrency Mining
	5.1.1 Excursus: Browser-based Mining 101
	5.1.2 Prevalence of Browser Mining
	5.1.2.1 NoCoin List
	5.1.2.2 Chrome

	5.1.3 The Coinhive Service
	5.1.4 Short Link Forwarding Service
	5.1.5 Estimating the Network Size
	5.1.6 Related Work
	5.1.7 Summary and Discussion

	5.2 Conclusion

	6 Conclusion
	6.1 Contributions and Findings
	6.1.1 What Is the Impact of Internet Giants on Internet Transport Evolution?
	6.1.2 How Do Content Owners Flexibilize in Light of Internet Giants and Network Ossification?
	6.1.3 How Are ApplicationLayer OptimizationsThatArePushed Forward by Internet Giants Used at Large?

	6.2 Future Work
	6.3 Concluding Remarks

	Abbreviations and Acronyms
	Bibliography

